207 lines
4.5 KiB
Python
207 lines
4.5 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Mon Jun 1 18:13:23 2015
|
||
|
|
||
|
@author: rlabbe
|
||
|
"""
|
||
|
|
||
|
from filterpy.common import plot_covariance_ellipse
|
||
|
from filterpy.kalman import ScaledUnscentedKalmanFilter as UKF
|
||
|
from math import tan, sin, cos, sqrt, atan2
|
||
|
import matplotlib.pyplot as plt
|
||
|
from numpy import array
|
||
|
import numpy as np
|
||
|
from numpy.random import randn
|
||
|
|
||
|
|
||
|
|
||
|
def normalize_angle(x, index):
|
||
|
def normalize(x):
|
||
|
if x > np.pi:
|
||
|
x -= 2*np.pi
|
||
|
if x < -np.pi:
|
||
|
x = 2*np.pi
|
||
|
return x
|
||
|
|
||
|
if x.ndim > 1:
|
||
|
for i in range(len(x)):
|
||
|
x[i, index] = normalize(x[i, index])
|
||
|
|
||
|
else:
|
||
|
x[index] = normalize(x[index])
|
||
|
|
||
|
|
||
|
def residual(a,b , index=1):
|
||
|
y = a - b
|
||
|
normalize_angle(y, index)
|
||
|
return y
|
||
|
|
||
|
|
||
|
def residual_h(a, b):
|
||
|
return residual(a, b, 1)
|
||
|
|
||
|
def residual_x(a, b):
|
||
|
return residual(a, b, 2)
|
||
|
|
||
|
|
||
|
def move(x, u, dt, wheelbase):
|
||
|
h = x[2]
|
||
|
v = u[0]
|
||
|
steering_angle = u[1]
|
||
|
|
||
|
dist = v*dt
|
||
|
|
||
|
if abs(steering_angle) < 0.0001:
|
||
|
# approximate straight line with huge radius
|
||
|
r = 1.e-30
|
||
|
b = dist / wheelbase * tan(steering_angle)
|
||
|
r = wheelbase / tan(steering_angle) # radius
|
||
|
|
||
|
|
||
|
sinh = sin(h)
|
||
|
sinhb = sin(h + b)
|
||
|
cosh = cos(h)
|
||
|
coshb = cos(h + b)
|
||
|
|
||
|
return x + array([-r*sinh + r*sinhb, r*cosh - r*coshb, b])
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def state_unscented_transform(Sigmas, Wm, Wc, noise_cov):
|
||
|
""" Computes unscented transform of a set of sigma points and weights.
|
||
|
returns the mean and covariance in a tuple.
|
||
|
"""
|
||
|
|
||
|
kmax, n = Sigmas.shape
|
||
|
|
||
|
x = np.zeros(3)
|
||
|
sum_sin, sum_cos = 0., 0.
|
||
|
|
||
|
for i in range(len(Sigmas)):
|
||
|
s = Sigmas[i]
|
||
|
x[0] += s[0] * Wm[i]
|
||
|
x[1] += s[1] * Wm[i]
|
||
|
sum_sin += sin(s[2])*Wm[i]
|
||
|
sum_cos += cos(s[2])*Wm[i]
|
||
|
|
||
|
x[2] = atan2(sum_sin, sum_cos)
|
||
|
|
||
|
|
||
|
# new covariance is the sum of the outer product of the residuals
|
||
|
# times the weights
|
||
|
P = np. zeros((n, n))
|
||
|
for k in range(kmax):
|
||
|
y = residual_x(Sigmas[k], x)
|
||
|
P += Wc[k] * np.outer(y, y)
|
||
|
|
||
|
if noise_cov is not None:
|
||
|
P += noise_cov
|
||
|
|
||
|
return (x, P)
|
||
|
|
||
|
|
||
|
|
||
|
def z_unscented_transform(Sigmas, Wm, Wc, noise_cov):
|
||
|
""" Computes unscented transform of a set of sigma points and weights.
|
||
|
returns the mean and covariance in a tuple.
|
||
|
"""
|
||
|
|
||
|
kmax, n = Sigmas.shape
|
||
|
|
||
|
x = np.zeros(2)
|
||
|
sum_sin, sum_cos = 0., 0.
|
||
|
|
||
|
for i in range(len(Sigmas)):
|
||
|
s = Sigmas[i]
|
||
|
x[0] += s[0] * Wm[i]
|
||
|
sum_sin += sin(s[1])*Wm[i]
|
||
|
sum_cos += cos(s[1])*Wm[i]
|
||
|
|
||
|
x[1] = atan2(sum_sin, sum_cos)
|
||
|
|
||
|
|
||
|
# new covariance is the sum of the outer product of the residuals
|
||
|
# times the weights
|
||
|
P = np.zeros((n, n))
|
||
|
for k in range(kmax):
|
||
|
y = residual_h(Sigmas[k], x)
|
||
|
|
||
|
P += Wc[k] * np.outer(y, y)
|
||
|
|
||
|
|
||
|
if noise_cov is not None:
|
||
|
P += noise_cov
|
||
|
|
||
|
return (x, P)
|
||
|
|
||
|
|
||
|
sigma_r = 1.
|
||
|
sigma_h = .1#np.radians(1)
|
||
|
sigma_steer = np.radians(.01)
|
||
|
dt = 1.0
|
||
|
wheelbase = 0.5
|
||
|
|
||
|
m = array([[5, 10],
|
||
|
[10, 5],
|
||
|
[15, 15]])
|
||
|
|
||
|
|
||
|
def fx(x, dt, u):
|
||
|
return move(x, u, dt, wheelbase)
|
||
|
|
||
|
|
||
|
def Hx(x, landmark):
|
||
|
""" takes a state variable and returns the measurement that would
|
||
|
correspond to that state.
|
||
|
"""
|
||
|
px = landmark[0]
|
||
|
py = landmark[1]
|
||
|
dist = np.sqrt((px - x[0])**2 + (py - x[1])**2)
|
||
|
|
||
|
Hx = array([dist, atan2(py - x[1], px - x[0]) - x[2]])
|
||
|
return Hx
|
||
|
|
||
|
|
||
|
ukf= UKF(dim_x=3, dim_z=2, fx=fx, hx=Hx, dt=dt, alpha=1.e-3, beta=.1, kappa=0)
|
||
|
ukf.x = array([2, 6, .3])
|
||
|
ukf.P = np.diag([.1, .1, .2])
|
||
|
ukf.R = np.diag([sigma_r**2, sigma_h**2])
|
||
|
ukf.Q = np.zeros((3,3))
|
||
|
|
||
|
|
||
|
u = array([1.1, .01])
|
||
|
|
||
|
xp = ukf.x.copy()
|
||
|
|
||
|
plt.figure()
|
||
|
plt.scatter(m[:, 0], m[:, 1])
|
||
|
|
||
|
for i in range(250):
|
||
|
xp = move(xp, u, dt/10., wheelbase) # simulate robot
|
||
|
plt.plot(xp[0], xp[1], ',', color='g')
|
||
|
|
||
|
if i % 10 == 0:
|
||
|
ukf.predict(fx_args=u, UT=state_unscented_transform)
|
||
|
|
||
|
plot_covariance_ellipse((ukf.x[0], ukf.x[1]), ukf.P[0:2, 0:2], std=3,
|
||
|
facecolor='b', alpha=0.08)
|
||
|
|
||
|
for lmark in m:
|
||
|
d = sqrt((lmark[0] - xp[0])**2 + (lmark[1] - xp[1])**2) + randn()*sigma_r
|
||
|
a = atan2(lmark[1] - xp[1], lmark[0] - xp[0]) - xp[2] + randn()*sigma_h
|
||
|
z = np.array([d, a])
|
||
|
|
||
|
ukf.update(z, hx_args=(lmark,), UT=z_unscented_transform,
|
||
|
residual_x=residual_x, residual_h=residual_h)
|
||
|
|
||
|
plot_covariance_ellipse((ukf.x[0], ukf.x[1]), ukf.P[0:2, 0:2], std=3,
|
||
|
facecolor='g', alpha=0.4)
|
||
|
|
||
|
|
||
|
#plt.plot(ekf.x[0], ekf.x[1], 'x', color='r')
|
||
|
|
||
|
plt.axis('equal')
|
||
|
plt.title("UKF Robot localization")
|
||
|
plt.show()
|