141 lines
2.8 KiB
Python
141 lines
2.8 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Sat Jan 17 15:04:08 2015
|
||
|
|
||
|
@author: rlabbe
|
||
|
"""
|
||
|
|
||
|
|
||
|
|
||
|
from numpy.random import randn
|
||
|
import numpy as np
|
||
|
from numpy import array
|
||
|
import matplotlib.pyplot as plt
|
||
|
from filterpy.common import Q_discrete_white_noise
|
||
|
from filterpy.kalman import KalmanFilter
|
||
|
from math import sqrt
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
pos_var = 1.
|
||
|
dop_var = 2.
|
||
|
dt = 1/20
|
||
|
|
||
|
|
||
|
def rand_student_t(df, mu=0, std=1):
|
||
|
"""return random number distributed by student's t distribution with
|
||
|
`df` degrees of freedom with the specified mean and standard deviation.
|
||
|
"""
|
||
|
x = random.gauss(0, std)
|
||
|
y = 2.0*random.gammavariate(0.5*df, 2.0)
|
||
|
return x / (math.sqrt(y/df)) + mu
|
||
|
|
||
|
|
||
|
|
||
|
np.random.seed(124)
|
||
|
class ConstantVelocityObject(object):
|
||
|
def __init__(self, x0, vel, noise_scale):
|
||
|
self.x = np.array([x0, vel])
|
||
|
self.noise_scale = noise_scale
|
||
|
self.vel = vel
|
||
|
|
||
|
|
||
|
def update(self, dt):
|
||
|
pnoise = abs(randn()*self.noise_scale)
|
||
|
if self.x[1] > self.vel:
|
||
|
pnoise = -pnoise
|
||
|
|
||
|
self.x[1] += pnoise
|
||
|
self.x[0] += self.x[1]*dt
|
||
|
|
||
|
return self.x.copy()
|
||
|
|
||
|
|
||
|
def sense_pos(self):
|
||
|
return self.x[0] + [randn()*self.noise_scale[0]]
|
||
|
|
||
|
|
||
|
def vel(self):
|
||
|
return self.x[1] + [randn()*self.noise_scale[1]]
|
||
|
|
||
|
|
||
|
def sense(x, noise_scale=(1., 0.01)):
|
||
|
return x + [randn()*noise_scale[0], randn()*noise_scale[1]]
|
||
|
|
||
|
def sense_t(x, noise_scale=(1., 0.01)):
|
||
|
return x + [rand_student_t(2)*noise_scale[0],
|
||
|
rand_student_t(2)*noise_scale[1]]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
R2 = np.zeros((2, 2))
|
||
|
R1 = np.zeros((1, 1))
|
||
|
|
||
|
R2[0, 0] = pos_var
|
||
|
R2[1, 1] = dop_var
|
||
|
|
||
|
R1[0,0] = dop_var
|
||
|
|
||
|
H2 = np.array([[1., 0.], [0., 1.]])
|
||
|
H1 = np.array([[0., 1.]])
|
||
|
|
||
|
|
||
|
|
||
|
kf = KalmanFilter(2, 1)
|
||
|
kf.F = array([[1, dt],
|
||
|
[0, 1]])
|
||
|
kf.H = array([[1, 0],
|
||
|
[0, 1]])
|
||
|
kf.Q = Q_discrete_white_noise(2, dt, .02)
|
||
|
kf.x = array([0., 0.])
|
||
|
kf.R = R1
|
||
|
kf.H = H1
|
||
|
kf.P *= 10
|
||
|
|
||
|
|
||
|
random.seed(1234)
|
||
|
track = []
|
||
|
zs = []
|
||
|
ests = []
|
||
|
sensor_noise = (sqrt(pos_var), sqrt(dop_var))
|
||
|
obj = ConstantVelocityObject(0., 1., noise_scale=.18)
|
||
|
|
||
|
for i in range(30000):
|
||
|
x = obj.update(dt/10)
|
||
|
z = sense_t(x, sensor_noise)
|
||
|
if i % 10 != 0:
|
||
|
continue
|
||
|
|
||
|
if i % 60 == 87687658760:
|
||
|
kf.predict()
|
||
|
kf.update(z, H=H2, R=R2)
|
||
|
else:
|
||
|
kf.predict()
|
||
|
kf.update(z[1], H=H1, R=R1)
|
||
|
|
||
|
ests.append(kf.x)
|
||
|
|
||
|
track.append(x)
|
||
|
zs.append(z)
|
||
|
|
||
|
|
||
|
track = np.asarray(track)
|
||
|
zs = np.asarray(zs)
|
||
|
ests = np.asarray(ests)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.subplot(211)
|
||
|
plt.plot(track[:,0], label='track')
|
||
|
plt.plot(zs[:,0], label='measurements')
|
||
|
plt.plot(ests[:,0], label='filter')
|
||
|
plt.legend(loc='best')
|
||
|
|
||
|
plt.subplot(212)
|
||
|
plt.plot(track[:,1], label='track')
|
||
|
plt.plot(zs[:,1], label='measurements')
|
||
|
plt.plot(ests[:,1], label='filter')
|
||
|
plt.show()
|
||
|
|