Kalman-and-Bayesian-Filters.../experiments/ukf_baseball.py

215 lines
4.2 KiB
Python
Raw Normal View History

2015-02-14 05:43:00 +01:00
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 8 09:55:24 2015
@author: rlabbe
"""
from math import radians, sin, cos, sqrt, exp, atan2, radians
from numpy import array, asarray
from numpy.random import randn
import numpy as np
import math
import matplotlib.pyplot as plt
from filterpy.kalman import UnscentedKalmanFilter as UKF
from filterpy.common import runge_kutta4
class BaseballPath(object):
def __init__(self, x0, y0, launch_angle_deg, velocity_ms,
noise=(1.0,1.0)):
""" Create 2D baseball path object
(x = distance from start point in ground plane,
y=height above ground)
x0,y0 initial position
launch_angle_deg angle ball is travelling respective to
ground plane
velocity_ms speeed of ball in meters/second
noise amount of noise to add to each position
in (x,y)
"""
omega = radians(launch_angle_deg)
self.v_x = velocity_ms * cos(omega)
self.v_y = velocity_ms * sin(omega)
self.x = x0
self.y = y0
self.noise = noise
def drag_force(self, velocity):
""" Returns the force on a baseball due to air drag at
the specified velocity. Units are SI
"""
B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))
return B_m * velocity
def update(self, dt, vel_wind=0.):
""" compute the ball position based on the specified time
step and wind velocity. Returns (x,y) position tuple
"""
# Euler equations for x and y
self.x += self.v_x*dt
self.y += self.v_y*dt
# force due to air drag
v_x_wind = self.v_x - vel_wind
v = sqrt(v_x_wind**2 + self.v_y**2)
F = self.drag_force(v)
# Euler's equations for velocity
self.v_x = self.v_x - F*v_x_wind*dt
self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt
return (self.x, self.y)
radar_pos = (100,0)
omega = 45.
def radar_sense(baseball, noise_rng, noise_brg):
x, y = baseball.x, baseball.y
rx, ry = radar_pos[0], radar_pos[1]
rng = ((x-rx)**2 + (y-ry)**2) ** .5
bearing = atan2(y-ry, x-rx)
rng += randn() * noise_rng
bearing += radians(randn() * noise_brg)
return (rng, bearing)
ball = BaseballPath(x0=0, y0=1, launch_angle_deg=45,
velocity_ms=60, noise=[0,0])
'''
xs = []
ys = []
dt = 0.05
y = 1
while y > 0:
x,y = ball.update(dt)
xs.append(x)
ys.append(y)
plt.plot(xs, ys)
plt.axis('equal')
plt.show()
'''
dt = 1/30.
def hx(x):
global radar_pos
dx = radar_pos[0] - x[0]
dy = radar_pos[1] - x[2]
rng = (dx*dx + dy*dy)**.5
bearing = atan2(-dy, -dx)
#print(x)
#print('hx:', rng, np.degrees(bearing))
return array([rng, bearing])
def fx(x, dt):
fx.ball.x = x[0]
fx.ball.y = x[2]
fx.ball.vx = x[1]
fx.ball.vy = x[3]
N = 10
ball_dt = dt/float(N)
for i in range(N):
fx.ball.update(ball_dt)
#print('fx', fx.ball.x, fx.ball.v_x, fx.ball.y, fx.ball.v_y)
return array([fx.ball.x, fx.ball.v_x, fx.ball.y, fx.ball.v_y])
fx.ball = BaseballPath(x0=0, y0=1, launch_angle_deg=45,
velocity_ms=60, noise=[0,0])
y = 1.
x = 0.
theta = 35. # launch angle
v0 = 50.
ball = BaseballPath(x0=x, y0=y, launch_angle_deg=theta,
velocity_ms=v0, noise=[.3,.3])
kf = UKF(dim_x=4, dim_z=2, dt=dt, hx=hx, fx=fx, kappa=0)
#kf.R *= r
kf.R[0,0] = 0.1
kf.R[1,1] = radians(0.2)
omega = radians(omega)
vx = cos(omega) * v0
vy = sin(omega) * v0
kf.x = array([x, vx, y, vy])
kf.R*= 0.01
#kf.R[1,1] = 0.01
kf.P *= 10
f1 = kf
t = 0
xs = []
ys = []
while y > 0:
t += dt
x,y = ball.update(dt)
z = radar_sense(ball, 0, 0)
#print('z', z)
#print('ball', ball.x, ball.v_x, ball.y, ball.v_y)
f1.predict()
f1.update(z)
xs.append(f1.x[0])
ys.append(f1.x[2])
f1.predict()
p1 = plt.scatter(x, y, color='r', marker='o', s=75, alpha=0.5)
p2, = plt.plot (xs, ys, lw=2, marker='o')
#p3, = plt.plot (xs2, ys2, lw=4)
#plt.legend([p1,p2, p3],
# ['Measurements', 'Kalman filter(R=0.5)', 'Kalman filter(R=10)'],
# loc='best', scatterpoints=1)
plt.show()