Kalman-and-Bayesian-Filters.../code/nonlinear_internal.py

50 lines
1.4 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 9 13:02:32 2015
@author: Roger Labbe
"""
import filterpy.stats as stats
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import numpy as np
def plot1():
P = np.array([[6, 2.5], [2.5, .6]])
stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2)
def plot2():
P = np.array([[6, 2.5], [2.5, .6]])
circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7)
ax = plt.gca()
ax.add_artist(circle1)
plt.xlim(0,10)
plt.ylim(0,3)
P = np.array([[6, 2.5], [2.5, .6]])
stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2)
def plot3():
P = np.array([[6, 2.5], [2.5, .6]])
circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7)
ax = plt.gca()
ax.add_artist(circle1)
plt.xlim(0,10)
plt.ylim(0,3)
plt.axhline(3, ls='--')
stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2)
def plot4():
P = np.array([[6, 2.5], [2.5, .6]])
circle1=plt.Circle((10,0),3,color='#004080',fill=False,linewidth=4, alpha=.7)
ax = plt.gca()
ax.add_artist(circle1)
plt.xlim(0,10)
plt.ylim(0,3)
plt.axhline(3, ls='--')
stats.plot_covariance_ellipse((10, 2), P, facecolor='g', alpha=0.2)
plt.scatter([11.4], [2.65],s=200)
plt.scatter([12], [3], c='r', s=200)
plt.show()