Kalman-and-Bayesian-Filters.../exp/range_finder.py

119 lines
2.6 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""
Created on Sat May 24 19:14:06 2014
@author: rlabbe
"""
from __future__ import division, print_function
from KalmanFilter import KalmanFilter
import numpy as np
import matplotlib.pyplot as plt
import numpy.random as random
import math
class DMESensor(object):
def __init__(self, pos_a, pos_b, noise_factor=1.0):
self.A = pos_a
self.B = pos_b
self.noise_factor = noise_factor
def range_of (self, pos):
""" returns tuple containing noisy range data to A and B
given a position 'pos'
"""
ra = math.sqrt((self.A[0] - pos[0])**2 + (self.A[1] - pos[1])**2)
rb = math.sqrt((self.B[0] - pos[0])**2 + (self.B[1] - pos[1])**2)
return (ra + random.randn()*self.noise_factor,
rb + random.randn()*self.noise_factor)
def dist(a,b):
return math.sqrt ((a[0]-b[0])**2 + (a[1]-b[1])**2)
def H_of (pos, pos_A, pos_B):
from math import sin, cos, atan2
theta_a = atan2(pos_a[1]-pos[1], pos_a[0] - pos[0])
theta_b = atan2(pos_b[1]-pos[1], pos_b[0] - pos[0])
return np.mat([[-cos(theta_a), 0, -sin(theta_a), 0],
[-cos(theta_b), 0, -sin(theta_b), 0]])
# equivalently we can do this...
#dist_a = dist(pos, pos_A)
#dist_b = dist(pos, pos_B)
#return np.mat([[(pos[0]-pos_A[0])/dist_a, 0, (pos[1]-pos_A[1])/dist_a,0],
# [(pos[0]-pos_B[0])/dist_b, 0, (pos[1]-pos_B[1])/dist_b,0]])
pos_a = (100,-20)
pos_b = (-100, -20)
f1 = KalmanFilter(dim=4)
dt = 1.0 # time step
'''
f1.F = np.mat ([[1, dt, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, dt],
[0, 0, 0, 1]])
'''
f1.F = np.mat ([[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
f1.B = 0.
f1.R = np.eye(2) * 1.
f1.Q = np.eye(4) * .1
f1.x = np.mat([1,0,1,0]).T
f1.P = np.eye(4) * 5.
# initialize storage and other variables for the run
count = 30
xs, ys = [],[]
pxs, pys = [],[]
d = DMESensor (pos_a, pos_b, noise_factor=1.)
pos = [0,0]
for i in range(count):
pos = (i,i)
ra,rb = d.range_of(pos)
rx,ry = d.range_of((i+f1.x[0,0], i+f1.x[2,0]))
print ('range =', ra,rb)
z = np.mat([[ra-rx],[rb-ry]])
print('z =', z)
f1.H = H_of (pos, pos_a, pos_b)
print('H =', f1.H)
##f1.update (z)
print (f1.x)
xs.append (f1.x[0,0]+i)
ys.append (f1.x[2,0]+i)
pxs.append (pos[0])
pys.append(pos[1])
f1.predict ()
print (f1.H * f1.x)
print (z)
print (f1.x)
f1.update(z)
print(f1.x)
p1, = plt.plot (xs, ys, 'r--')
p2, = plt.plot (pxs, pys)
plt.legend([p1,p2], ['filter', 'ideal'], 2)
plt.show()