Kalman-and-Bayesian-Filters.../experiments/RobotLocalizationParticleFilter_2.py

252 lines
6.1 KiB
Python
Raw Normal View History

2018-07-14 20:45:39 +02:00
# -*- coding: utf-8 -*-
"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import numpy as np
from numpy.random import randn, random, uniform
import scipy.stats
def create_uniform_particles( x_range, y_range, hdg_range, N):
particles = np.empty((N, 3))
particles[:, 0] = uniform(x_range[0], x_range[1], size=N)
particles[:, 1] = uniform(y_range[0], y_range[1], size=N)
particles[:, 2] = uniform(hdg_range[0], hdg_range[1], size=N)
particles[:, 2] %= 2 * np.pi
return particles
def create_gaussian_particles( mean, var, N):
particles = np.empty((N, 3))
particles[:, 0] = mean[0] + randn(N)*var[0]
particles[:, 1] = mean[1] + randn(N)*var[1]
particles[:, 2] = mean[2] + randn(N)*var[2]
particles[:, 2] %= 2 * np.pi
return particles
def predict(particles, u, std, dt=1.):
""" move according to control input u (heading change, velocity)
with noise `std (std_heading, std`"""
N = len(particles)
particles[:, 2] += u[0] + randn(N) * std[0]
particles[:, 2] %= 2 * np.pi
d = u[1]*dt + randn(N) * std[1]
particles[:, 0] += np.cos(particles[:, 2]) * d
particles[:, 1] += np.sin(particles[:, 2]) * d
def update(particles, weights, z, R, landmarks):
weights.fill(1.)
for i, landmark in enumerate(landmarks):
distance = np.linalg.norm(particles[:, 0:2] - landmark, axis=1)
weights *= scipy.stats.norm(distance, R).pdf(z[i])
weights += 1.e-300
weights /= sum(weights) # normalize
def neff(weights):
return 1. / np.sum(np.square(weights))
def resample(particles, weights):
N = len(particles)
cumulative_sum = np.cumsum(weights)
cumulative_sum[-1] = 1. # avoid round-off error
indexes = np.searchsorted(cumulative_sum, random(N))
# resample according to indexes
particles[:] = particles[indexes]
weights[:] = weights[indexes]
weights /= np.sum(weights) # normalize
def resample_from_index(particles, weights, indexes):
particles[:] = particles[indexes]
weights[:] = weights[indexes]
weights /= np.sum(weights)
def estimate(particles, weights):
""" returns mean and variance """
pos = particles[:, 0:2]
mu = np.average(pos, weights=weights, axis=0)
var = np.average((pos - mu)**2, weights=weights, axis=0)
return mu, var
def mean(particles, weights):
""" returns weighted mean position"""
return np.average(particles[:, 0:2], weights=weights, axis=0)
def residual_resample(w):
N = len(w)
w_ints = np.floor(N*w).astype(int)
residual = w - w_ints
residual /= sum(residual)
indexes = np.zeros(N, 'i')
k = 0
for i in range(N):
for j in range(w_ints[i]):
indexes[k] = i
k += 1
cumsum = np.cumsum(residual)
cumsum[N-1] = 1.
for j in range(k, N):
indexes[j] = np.searchsorted(cumsum, random())
return indexes
def residual_resample2(w):
N = len(w)
w_ints =np.floor(N*w).astype(int)
R = np.sum(w_ints)
m_rdn = N - R
Ws = (N*w - w_ints)/ m_rdn
indexes = np.zeros(N, 'i')
i = 0
for j in range(N):
for k in range(w_ints[j]):
indexes[i] = j
i += 1
cumsum = np.cumsum(Ws)
cumsum[N-1] = 1 # just in case
for j in range(i, N):
indexes[j] = np.searchsorted(cumsum, random())
return indexes
def systemic_resample(w):
N = len(w)
Q = np.cumsum(w)
indexes = np.zeros(N, 'int')
t = np.linspace(0, 1-1/N, N) + random()/N
i, j = 0, 0
while i < N and j < N:
while Q[j] < t[i]:
j += 1
indexes[i] = j
i += 1
return indexes
def Gaussian(mu, sigma, x):
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
g = (np.exp(-((mu - x) ** 2) / (sigma ** 2) / 2.0) /
np.sqrt(2.0 * np.pi * (sigma ** 2)))
for i in range(len(g)):
g[i] = max(g[i], 1.e-229)
return g
if __name__ == '__main__':
DO_PLOT_PARTICLES = False
from numpy.random import seed
import matplotlib.pyplot as plt
#plt.figure()
seed(5)
for count in range(10):
print()
print(count)
N = 4000
sensor_std_err = .1
landmarks = np.array([[-1, 2], [2,4], [10,6], [18,25]])
NL = len(landmarks)
particles = create_uniform_particles((0,20), (0,20), (0, 6.28), N)
weights = np.zeros(N)
#if DO_PLOT_PARTICLES:
# plt.scatter(particles[:, 0], particles[:, 1], alpha=.2, color='g')
xs = []
for x in range(18):
zs = []
pos=(x+1, x+1)
for landmark in landmarks:
d = np.sqrt((landmark[0]-pos[0])**2 + (landmark[1]-pos[1])**2)
zs.append(d + randn()*sensor_std_err)
zs = np.linalg.norm(landmarks - pos, axis=1) + randn(NL)*sensor_std_err
# move diagonally forward to (x+1, x+1)
predict(particles, (0.00, 1.414), (.2, .05))
update(particles, weights, z=zs, R=sensor_std_err, landmarks=landmarks)
if x == 0:
print(max(weights))
#while abs(pf.neff() -N) < .1:
# print('neffing')
# pf.create_uniform_particles((0,20), (0,20), (0, 6.28))
# pf.update(z=zs)
#print(pf.neff())
#indexes = residual_resample2(pf.weights)
indexes = systemic_resample(weights)
resample_from_index(particles, weights, indexes)
#pf.resample()
mu, var = estimate(particles, weights)
xs.append(mu)
if DO_PLOT_PARTICLES:
plt.scatter(particles[:, 0], particles[:, 1], alpha=.2)
plt.scatter(pos[0], pos[1], marker='*', color='r')
plt.scatter(mu[0], mu[1], marker='s', color='r')
plt.pause(.01)
xs = np.array(xs)
plt.plot(xs[:, 0], xs[:, 1])
plt.show()