JuliaForDataAnalysis/ch08.jl
2022-02-08 20:58:33 +01:00

249 lines
5.0 KiB
Julia

# Bogumił Kamiński, 2022
# Codes for chapter 6
# Code for section 6.1
if isfile("puzzles.csv.bz2")
@info "file already present"
else
@info "fetching file"
download("https://database.lichess.org/" *
"lichess_db_puzzle.csv.bz2",
"puzzles.csv.bz2")
end
using CodecBzip2
compressed = read("puzzles.csv.bz2")
plain = transcode(Bzip2Decompressor, compressed)
open("puzzles.csv", "w") do io
println(io, "PuzzleId,FEN,Moves,Rating,RatingDeviation," *
"Popularity,NbPlays,Themes,GameUrl")
write(io, plain)
end
readlines("puzzles.csv")
# Code for section 6.2
using CSV
using DataFrames
puzzles = CSV.read("puzzles.csv", DataFrame);
CSV.read(plain, DataFrame);
compressed = nothing
plain = nothing
# Code for listing 6.1
puzzles
# Code for listing 6.2
describe(puzzles)
# Code for getting basic information about a data frame
ncol(puzzles)
nrow(puzzles)
names(puzzles)
# Code for section 6.3
puzzles.Rating
using BenchmarkTools
@benchmark $puzzles.Rating
puzzles.Rating == copy(puzzles.Rating)
puzzles.Rating === copy(puzzles.Rating)
puzzles.Rating === puzzles.Rating
copy(puzzles.Rating) === copy(puzzles.Rating)
puzzles."Rating"
col = "Rating"
data_frame_name[selected_rows, selected_columns]
puzzles[:, "Rating"]
puzzles[:, :Rating]
puzzles[:, 4]
puzzles[:, col]
columnindex(puzzles, "Rating")
columnindex(puzzles, "Some fancy column name")
hasproperty(puzzles, "Rating")
hasproperty(puzzles, "Some fancy column name")
@benchmark $puzzles[:, :Rating]
puzzles[!, "Rating"]
puzzles[!, :Rating]
puzzles[!, 4]
puzzles[!, col]
using Plots
plot(histogram(puzzles.Rating, label="Rating"),
histogram(puzzles.RatingDeviation, label="RatingDeviation"),
histogram(puzzles.Popularity, label="Popularity"),
histogram(puzzles.NbPlays, label="NbPlays"))
plot([histogram(puzzles[!, col]; label=col) for
col in ["Rating", "RatingDeviation",
"Popularity", "NbPlays"]]...)
# Code for section 6.4
using Statistics
plays_lo = median(puzzles.NbPlays)
puzzles.NbPlays .> plays_lo
puzzles.NbPlays > plays_lo
rating_lo = 1500
rating_hi = quantile(puzzles.Rating, 0.99)
rating_lo .< puzzles.Rating .< rating_hi
row_selector = (puzzles.NbPlays .> plays_lo) .&&
(rating_lo .< puzzles.Rating .< rating_hi)
sum(row_selector)
count(row_selector)
# Code for listing 6.3
good = puzzles[row_selector, ["Rating", "Popularity"]]
# Code for plotting histograms
plot(histogram(good.Rating; label="Rating"),
histogram(good.Popularity; label="Popularity"))
# Code for column selectors
puzzles[1, "Rating"]
puzzles[:, "Rating"]
row1 = puzzles[1, ["Rating", "Popularity"]]
row1["Rating"]
row1[:Rating]
row1[1]
row1.Rating
row1."Rating"
good = puzzles[row_selector, ["Rating", "Popularity"]]
good[1, "Rating"]
good[1, :]
good[:, "Rating"]
good[:, :]
names(puzzles, ["Rating", "Popularity"])
names(puzzles, [:Rating, :Popularity])
names(puzzles, [4, 6])
names(puzzles, [false, false, false, true, false, true, false, false, false])
names(puzzles, r"Rating")
names(puzzles, Not([4, 6]))
names(puzzles, Not(r"Rating"))
names(puzzles, Between("Rating", "Popularity"))
names(puzzles, :)
names(puzzles, All())
names(puzzles, Cols(r"Rating", "NbPlays"))
names(puzzles, Cols(startswith("P")))
names(puzzles, startswith("P"))
names(puzzles, Real)
names(puzzles, AbstractString)
puzzles[:, names(puzzles, Real)]
# Code for row subsetting
df1 = puzzles[:, ["Rating", "Popularity"]];
df2 = puzzles[!, ["Rating", "Popularity"]];
df1 == df2
df1 == puzzles
df2 == puzzles
df1.Rating === puzzles.Rating
df1.Popularity === puzzles.Popularity
df2.Rating === puzzles.Rating
df2.Popularity === puzzles.Popularity
@benchmark $puzzles[:, ["Rating", "Popularity"]]
@benchmark $puzzles[!, ["Rating", "Popularity"]]
puzzles[1, 1]
puzzles[[1], 1]
puzzles[1, [1]]
puzzles[[1], [1]]
# Code for making views
@view puzzles[1, 1]
@view puzzles[[1], 1]
@view puzzles[1, [1]]
@view puzzles[[1], [1]]
@btime $puzzles[$row_selector, ["Rating", "Popularity"]];
@btime @view $puzzles[$row_selector, ["Rating", "Popularity"]];
parentindices(@view puzzles[row_selector, ["Rating", "Popularity"]])
# Code for section 6.5
describe(good)
rating_mapping = Dict{Int, Vector{Int}}()
for (i, rating) in enumerate(good.Rating)
if haskey(rating_mapping, rating)
push!(rating_mapping[rating], i)
else
rating_mapping[rating] = [i]
end
end
rating_mapping
good[rating_mapping[2108], :]
unique(good[rating_mapping[2108], :].Rating)
using Statistics
mean(good[rating_mapping[2108], "Popularity"])
ratings = unique(good.Rating)
mean_popularities = map(ratings) do rating
indices = rating_mapping[rating]
popularities = good[indices, "Popularity"]
return mean(popularities)
end
scatter(ratings, mean_popularities;
xlabel="rating", ylabel="mean popularity", legend=false)
import Loess
model = Loess.loess(ratings, mean_popularities);
ratings_predict = float.(sort(ratings))
popularity_predict = Loess.predict(model, ratings_predict)
plot!(ratings_predict, popularity_predict; width=5, color="black")