226 lines
5.1 KiB
Julia
226 lines
5.1 KiB
Julia
# Bogumił Kamiński, 2022
|
|
|
|
# Codes for chapter 10
|
|
|
|
# Code for section 10.1
|
|
|
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
|
|
|
|
using DataFrames
|
|
|
|
# Code for listing 10.1
|
|
|
|
aq1 = DataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
|
DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4])
|
|
|
|
# Code for creating DataFrame with automatic column names
|
|
|
|
DataFrame(aq, :auto)
|
|
|
|
# Codes for creating DataFrame from vector of vectors
|
|
|
|
aq_vec = collect(eachcol(aq))
|
|
DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
|
DataFrame(aq_vec, :auto)
|
|
|
|
# Codes for section 10.1.2
|
|
|
|
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
|
|
set2=(x=aq[:, 3], y=aq[:, 4]),
|
|
set3=(x=aq[:, 5], y=aq[:, 6]),
|
|
set4=(x=aq[:, 7], y=aq[:, 8]));
|
|
|
|
data.set1.x
|
|
|
|
DataFrame(x1=data.set1.x, y1=data.set1.y,
|
|
x2=data.set2.x, y2=data.set2.y,
|
|
x3=data.set3.x, y3=data.set3.y,
|
|
x4=data.set4.x, y4=data.set4.y)
|
|
|
|
DataFrame(:x1 => data.set1.x, :y1 => data.set1.y,
|
|
:x2 => data.set2.x, :y2 => data.set2.y,
|
|
:x3 => data.set3.x, :y3 => data.set3.y,
|
|
:x4 => data.set4.x, :y4 => data.set4.y)
|
|
|
|
DataFrame([:x1 => data.set1.x, :y1 => data.set1.y,
|
|
:x2 => data.set2.x, :y2 => data.set2.y,
|
|
:x3 => data.set3.x, :y3 => data.set3.y,
|
|
:x4 => data.set4.x, :y4 => data.set4.y]);
|
|
|
|
[(i, v) for i in 1:4 for v in [:x, :y]]
|
|
|
|
[string(v, i) for i in 1:4 for v in [:x, :y]]
|
|
|
|
[string(v, i) => getproperty(data[i], v)
|
|
for i in 1:4 for v in [:x, :y]]
|
|
|
|
DataFrame([string(v, i) => getproperty(data[i], v)
|
|
for i in 1:4 for v in [:x, :y]]);
|
|
|
|
data_dict = Dict([string(v, i) => getproperty(data[i], v)
|
|
for i in 1:4 for v in [:x, :y]])
|
|
collect(data_dict)
|
|
|
|
DataFrame(data_dict)
|
|
|
|
df1 = DataFrame(x1=data.set1.x)
|
|
df1.x1 === data.set1.x
|
|
|
|
df2 = DataFrame(x1=data.set1.x; copycols=false)
|
|
df2.x1 === data.set1.x
|
|
|
|
df = DataFrame(x=1:3, y=1)
|
|
df.x
|
|
|
|
DataFrame(x=[1], y=[1, 2, 3])
|
|
|
|
using RCall
|
|
r_df = R"data.frame(a=1:6, b=1:2, c=1:3)"
|
|
julia_df = rcopy(r_df)
|
|
|
|
# Codes for section 10.1.3
|
|
|
|
data.set1
|
|
DataFrame(data.set1)
|
|
|
|
DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)])
|
|
|
|
data
|
|
|
|
# Code for listing 10.2
|
|
|
|
aq2 = DataFrame(data)
|
|
|
|
# Codes for section 10.1.4
|
|
|
|
aq1
|
|
|
|
using Statistics
|
|
using StatsBase
|
|
cor_mat = pairwise(cor, eachcol(aq1))
|
|
|
|
using Plots
|
|
heatmap(names(aq1), names(aq1), cor_mat;
|
|
aspect_ratio=:equal, size=(400, 400),
|
|
rightmargin=5Plots.mm)
|
|
# Codes for listing 10.3
|
|
|
|
data_dfs = map(DataFrame, data)
|
|
|
|
# Codes for vertical concatenation examples
|
|
|
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4)
|
|
|
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
|
source="source_id")
|
|
|
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
|
source="source_id"=>string.("set", 1:4))
|
|
|
|
reduce(vcat, collect(data_dfs);
|
|
source="source_id"=>string.("set", 1:4))
|
|
|
|
# Code for listing 10.4
|
|
|
|
df1 = DataFrame(a=1:3, b=11:13)
|
|
df2 = DataFrame(a=4:6, c=24:26)
|
|
vcat(df1, df2)
|
|
vcat(df1, df2; cols=:union)
|
|
|
|
# Code for listing 10.5
|
|
|
|
df_agg = DataFrame()
|
|
append!(df_agg, data_dfs.set1)
|
|
append!(df_agg, data_dfs.set2)
|
|
|
|
# Code for appending tables to a data frame
|
|
|
|
df_agg = DataFrame()
|
|
append!(df_agg, data.set1)
|
|
append!(df_agg, data.set2)
|
|
|
|
# Code for promote keyword argument
|
|
|
|
df1 = DataFrame(a=1:3, b=11:13)
|
|
df2 = DataFrame(a=4:6, b=[14, missing, 16])
|
|
append!(df1, df2)
|
|
append!(df1, df2; promote=true)
|
|
|
|
# Code for section 10.2.3
|
|
|
|
df = DataFrame()
|
|
push!(df, (a=1, b=2))
|
|
push!(df, (a=3, b=4))
|
|
|
|
df = DataFrame(a=Int[], b=Int[])
|
|
push!(df, [1, 2])
|
|
push!(df, [3, 4])
|
|
|
|
function sim_step(current)
|
|
dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1)))
|
|
return (x=current.x + dx, y=current.y + dy)
|
|
end
|
|
|
|
using BenchmarkTools
|
|
@btime rand(((1,0), (-1,0), (0,1), (0,-1)));
|
|
|
|
dx, dy = (10, 20)
|
|
dx
|
|
dy
|
|
|
|
using FreqTables
|
|
using Random
|
|
Random.seed!(1234);
|
|
proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7])
|
|
|
|
using Random
|
|
Random.seed!(6);
|
|
walk = DataFrame(x=0, y=0)
|
|
for _ in 1:10
|
|
current = walk[end, :]
|
|
push!(walk, sim_step(current))
|
|
end
|
|
walk
|
|
|
|
using Plots
|
|
plot(walk.x, walk.y;
|
|
legend=false,
|
|
series_annotations=1:11,
|
|
xticks=range(extrema(walk.x)...),
|
|
yticks=range(extrema(walk.y)...))
|
|
|
|
extrema(walk.y)
|
|
|
|
range(1, 5)
|
|
|
|
(3/4)^9
|
|
|
|
# Code for listing 10.6
|
|
|
|
function walk_unique() #A
|
|
walk = DataFrame(x=0, y=0)
|
|
for _ in 1:10
|
|
current = walk[end, :]
|
|
push!(walk, sim_step(current))
|
|
end
|
|
return nrow(unique(walk)) == nrow(walk) #B
|
|
end
|
|
Random.seed!(2);
|
|
proptable([walk_unique() for _ in 1:10^5])
|
|
|
|
# code for serialization
|
|
|
|
using Serialization
|
|
serialize("walk.bin", walk)
|
|
deserialize("walk.bin") == walk
|