JuliaForDataAnalysis/ch03.jl
2022-06-25 09:51:47 +02:00

147 lines
2.7 KiB
Julia

# Bogumił Kamiński, 2021
# Codes for chapter 3
# Code for section 3.1
methods(cd)
sum isa Function
typeof(sum)
typeof(sum) == Function
supertype(typeof(sum))
function print_supertypes(T)
println(T)
T == Any || print_supertypes(supertype(T))
return nothing
end
print_supertypes(Int64)
function print_subtypes(T, indent_level=0)
println(" " ^ indent_level, T)
for S in subtypes(T)
print_subtypes(S, indent_level + 2)
end
return nothing
end
print_subtypes(Integer)
print_supertypes(typeof([1.0, 2.0, 3.0]))
print_supertypes(typeof(1:3))
AbstractVector
typejoin(typeof([1.0, 2.0, 3.0]), typeof(1:3))
# Code for section 3.2
fun(x) = println("unsupported type")
fun(x::Number) = println("a number was passed")
fun(x::Float64) = println("a Float64 value")
methods(fun)
fun("hello!")
fun(1)
fun(1.0)
bar(x, y) = "no numbers passed"
bar(x::Number, y) = "first argument is a number"
bar(x, y::Number) = "second argument is a number"
bar("hello", "world")
bar(1, "world")
bar("hello", 2)
bar(1, 2)
bar(x::Number, y::Number) = "both arguments are numbers"
bar(1, 2)
methods(bar)
function winsorized_mean(x::AbstractVector, k::Integer)
k >= 0 || throw(ArgumentError("k must be non-negative"))
length(x) > 2 * k || throw(ArgumentError("k is too large"))
y = sort!(collect(x))
for i in 1:k
y[i] = y[k + 1]
y[end - i + 1] = y[end - k]
end
return sum(y) / length(y)
end
winsorized_mean([8, 3, 1, 5, 7], 1)
winsorized_mean(1:10, 2)
winsorized_mean(1:10, "a")
winsorized_mean(10, 1)
winsorized_mean(1:10, -1)
winsorized_mean(1:10, 5)
# Code for section 3.3
module ExampleModule
function example()
println("Hello")
end
end # ExampleModule
import Statistics
x = [1, 2, 3]
mean(x)
Statistics.mean(x)
using Statistics
mean(x)
# start a fresh Julia session before running this code
mean = 1
using Statistics
mean
# start a fresh Julia session before running this code
using Statistics
mean([1, 2, 3])
mean = 1
# start a fresh Julia session before running this code
using Statistics
mean = 1
mean([1, 2, 3])
# start a fresh Julia session before running this code
using Statistics
using StatsBase
# - change to help mode by pressing `?` key
# - type "winsor" and press Enter
mean(winsor([8, 3, 1, 5, 7], count=1))
# Code for section 3.4
@time 1 + 2
@time(1 + 2)
@assert 1 == 2 "1 is not equal 2"
@assert(1 == 2, "1 is not equal 2")
@macroexpand @assert(1 == 2, "1 is not equal 2")
@macroexpand @time 1 + 2
# before running these codes
# define the winsorized_mean function using the code from section 3.1
using BenchmarkTools
x = rand(10^6);
@benchmark winsorized_mean($x, 10^5)
using Statistics
using StatsBase
@benchmark mean(winsor($x; count=10^5))
@edit winsor(x, count=10^5)