JuliaForDataAnalysis/appB.jl
2022-09-02 22:04:17 +02:00

323 lines
7.9 KiB
Julia

# Bogumił Kamiński, 2021
# Codes for appendix B
# the solutions for exercises from a given chapter assume that
# there are packages loaded, variables and functions defined in the user's
# Julia session in a state that reflects the point of computations
# at the position of the chapter where a given exercise is formulated
# Code for exercise 3.1
using BenchmarkTools
x = 1:10^6;
y = collect(x);
@btime sort($x);
@btime sort($y);
@edit sort(x)
# Code for exercise 4.1
using Statistics
using BenchmarkTools
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
@benchmark [cor($aq[:, i], $aq[:, i+1]) for i in 1:2:7]
@benchmark [cor(view($aq, :, i), view($aq, :, i+1)) for i in 1:2:7]
[cor(@view(aq[:, i]), @view(aq[:, i+1])) for i in 1:2:7]
# Code for exercise 4.2
function dice_distribution(dice1, dice2)
distribution = Dict{Int, Int}()
for i in dice1
for j in dice2
s = i + j
if haskey(distribution, s)
distribution[s] += 1
else
distribution[s] = 1
end
end
end
return distribution
end
function test_dice()
all_dice = [[1, x2, x3, x4, x5, x6]
for x2 in 2:11
for x3 in x2:11
for x4 in x3:11
for x5 in x4:11
for x6 in x5:11]
two_standard = dice_distribution(1:6, 1:6)
for d1 in all_dice, d2 in all_dice
test = dice_distribution(d1, d2)
if test == two_standard
println(d1, " ", d2)
end
end
end
test_dice()
# Code for exercise 4.3
plot(scatter(data.set1.x, data.set1.y; legend=false),
scatter(data.set2.x, data.set2.y; legend=false),
scatter(data.set3.x, data.set3.y; legend=false),
scatter(data.set4.x, data.set4.y; legend=false))
# Code for exercise 5.1
parse.(Int, ["1", "2", "3"])
# Code for exercise 5.2
Random.seed!(1234);
data5bis = [randn(100, 5) .- 0.4; randn(100, 5) .+ 0.4];
tsne = manifold.TSNE(n_components=2, init="random",
learning_rate="auto", random_state=1234);
data2bis = tsne.fit_transform(data5bis);
scatter(data2bis[:, 1], data2bis[:, 2];
color=[fill("black", 100); fill("gold", 100)],
legend=false)
# Code for exercise 6.1
years_table = freqtable(years)
plot(names(years_table, 1), years_table; legend=false,
xlabel="year", ylabel="# of movies")
# Code for exercise 6.2
s3 = Symbol.(s1)
@btime sort($s3);
@btime unique($s1);
@btime unique($s2);
@btime unique($s3);
# Code for exercise 7.1
v = ["1", "2", missing, "4"]
[ismissing(x) ? missing : parse(Int, x) for x in v]
map(v) do x
if ismissing(x)
return missing
else
return parse(Int, x)
end
end
using Missings
passmissing(parse).(Int, v)
# Code for exercise 7.2
using Dates
Date(2021, 1, 1):Month(1):Date(2021, 12, 1)
collect(Date(2021, 1, 1):Month(1):Date(2021, 12, 1))
# Code for exercise 7.3
query2 = "https://api.nbp.pl/api/exchangerates/rates/a/usd/" *
"2020-06-01/2020-06-30/?format=json";
response2 = HTTP.get(query2);
json2 = JSON3.read(response2.body)
rates2 = [x.mid for x in json2.rates]
dates2 = [Date(x.effectiveDate) for x in json2.rates]
has_rate = rates .!== missing
rates2 == rates[has_rate]
dates2 == dates[has_rate]
# Code for exercise 8.1
using BenchmarkTools
@btime $puzzles."Rating";
# Code for exercise 9.1
using StatsBase
summarystats(puzzles[puzzles.Popularity .== 100, "NbPlays"])
summarystats(puzzles[puzzles.Popularity .== -100, "NbPlays"])
# Code for exercise 9.2
sum(length, values(rating_mapping))
nrow(good)
# Code for exercise 9.3
model2 = loess(ratings, mean_popularities; span=0.25);
popularity_predict2 = predict(model2, ratings_predict);
plot!(ratings_predict, popularity_predict2; width=5, color="yellow");
# Code for exercise 10.1
using BenchmarkTools
x = rand(10^6);
@btime DataFrame(x=$x);
@btime DataFrame(x=$x; copycols=false);
# Code for exercise 10.2
df1 = DataFrame(a=1,b=2)
df2 = DataFrame(b=3, a=4)
vcat(df1, df2)
vcat(df1, df2, cols=:orderequal)
# Code for exercise 10.3
function walk_unique_2ahead()
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
end
return all(walk[i, :] != walk[i+2, :] for i in 1:9)
end
Random.seed!(2);
proptable([walk_unique_2ahead() for _ in 1:10^5])
# Code for exercise 11.1
@time wide = DataFrame(ones(1, 10_000), :auto);
@time wide = DataFrame(ones(1, 10_000), :auto);
@time Tables.columntable(wide);
@time Tables.columntable(wide);
# Code for exercise 11.2
using Statistics
Dict(key.city => mean(df.rainfall) for (key, df) in pairs(gdf_city))
combine(gdf_city, :rainfall => mean)
# Code for exercise 12.1
cg = complete_graph(37700)
Base.summarysize(cg)
@time deg_class(cg, classes_df.ml_target);
# Code for exercise 12.2
scatter(log1p.(agg_df.deg_ml),
log1p.(agg_df.deg_web);
zcolor=agg_df.web_mean,
xlabel="degree ml", ylabel="degree web",
markersize=2, markerstrokewidth=0.5, markeralpha=0.8,
legend=:topleft, labels = "fraction web",
xticks=gen_ticks(maximum(classes_df.deg_ml)),
yticks=gen_ticks(maximum(classes_df.deg_web)))
# Code for exercise 12.3
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)),
classes_df, Binomial(), ProbitLink())
# Code for exercise 12.4
df = DataFrame()
df.a = [1, 2, 3]
df.b = df.a
df.b === df.a
df.b = df[:, "b"]
df.b === df.a
df.b == df.a
df[1:2, "a"] .= 10
df
# Code for exercise 13.1
@rselect(owensboro,
:arrest = :arrest_made,
:day = dayofweek(:date),
:type,
:v1 = contains(:violation, agg_violation.v[1]),
:v2 = contains(:violation, agg_violation.v[2]),
:v3 = contains(:violation, agg_violation.v[3]),
:v4 = contains(:violation, agg_violation.v[4]))
# Code for exercise 13.2
select(owensboro,
:arrest_made => :arrest,
:date => ByRow(dayofweek) => :day,
:type,
[:violation =>
ByRow(x -> contains(x, agg_violation.v[i])) =>
"v$i" for i in 1:4],
:date => ByRow(dayname) => :dayname)
# Code for exercise 13.3
@chain owensboro2 begin
groupby(:dayname, sort=true)
combine(:arrest => mean)
end
@chain owensboro2 begin
groupby([:dayname, :type], sort=true)
combine(:arrest => mean)
unstack(:dayname, :type, :arrest_mean)
end
# Code for exercise 13.4
train2 = owensboro2[owensboro2.train, :]
test2 = owensboro2[.!owensboro2.train, :]
test3, train3 = groupby(owensboro2, :train, sort=true)
# Code for exercise 14.1
@time mean(x -> x < 0, -10^6:10^6)
@time mean(x -> x < 0, -10^6:10^6)
@time mean(x -> x < 0, -10^6:10^6)
@time mean(<(0), -10^6:10^6)
@time mean(<(0), -10^6:10^6)
@time mean(<(0), -10^6:10^6)
lt0(x) = x < 0
@time mean(lt0, -10^6:10^6)
@time mean(lt0, -10^6:10^6)
@time mean(lt0, -10^6:10^6)
# Code for exercise 14.2
# web service code
using Genie
Genie.config.run_as_server = true
Genie.Router.route("/", method=POST) do
message = Genie.Requests.jsonpayload()
return try
n = message["n"]
Genie.Renderer.Json.json(rand(n))
catch
Genie.Responses.setstatus(400)
end
end
Genie.Server.up()
# client code
using HTTP
using JSON3
req = HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((n=3,)))
JSON3.read(req.body)
HTTP.post("http://127.0.0.1:8000",
["Content-Type" => "application/json"],
JSON3.write((x=3,)))