# Julia for Data Analysis ## Bogumił Kamiński, Daniel Kaszyński # Chapter 10 # Problems ### Exercise 1 Generate a random matrix `mat` having size 5x4 and all elements drawn independently and uniformly from the [0,1[ interval. Create a data frame using data from this matrix using auto-generated column names.
Solution ``` julia> using DataFrames julia> mat = rand(5, 4) 5×4 Matrix{Float64}: 0.8386 0.83612 0.0353994 0.15547 0.590172 0.611815 0.0691152 0.915788 0.879395 0.07271 0.980079 0.655158 0.340435 0.756196 0.0697535 0.388578 0.714515 0.861872 0.971521 0.176768 julia> DataFrame(mat, :auto) 5×4 DataFrame Row │ x1 x2 x3 x4 │ Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 0.8386 0.83612 0.0353994 0.15547 2 │ 0.590172 0.611815 0.0691152 0.915788 3 │ 0.879395 0.07271 0.980079 0.655158 4 │ 0.340435 0.756196 0.0697535 0.388578 5 │ 0.714515 0.861872 0.971521 0.176768 ```
### Exercise 2 Now, using matrix `mat` create a data frame with randomly generated column names. Use the `randstring` function from the `Random` module to generate them. Store this data frame in `df` variable.
Solution ``` julia> using Random julia> df = DataFrame(mat, [randstring() for _ in 1:4]) 5×4 DataFrame Row │ 6mTK5evn K8Inf7ER 5Caz55k0 SRiGemsa │ Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 0.8386 0.83612 0.0353994 0.15547 2 │ 0.590172 0.611815 0.0691152 0.915788 3 │ 0.879395 0.07271 0.980079 0.655158 4 │ 0.340435 0.756196 0.0697535 0.388578 5 │ 0.714515 0.861872 0.971521 0.176768 ```
### Exercise 3 Create a new data frame, taking `df` as a source that will have the same columns but its column names will be `y1`, `y2`, `y3`, `y4`.
Solution ``` julia> DataFrame(["y$i" => df[!, i] for i in 1:4]) 5×4 DataFrame Row │ y1 y2 y3 y4 │ Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 0.8386 0.83612 0.0353994 0.15547 2 │ 0.590172 0.611815 0.0691152 0.915788 3 │ 0.879395 0.07271 0.980079 0.655158 4 │ 0.340435 0.756196 0.0697535 0.388578 5 │ 0.714515 0.861872 0.971521 0.176768 ``` You could also use the `raname` function: ``` julia> rename(df, string.("y", 1:4)) 5×4 DataFrame Row │ y1 y2 y3 y4 │ Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 0.8386 0.83612 0.0353994 0.15547 2 │ 0.590172 0.611815 0.0691152 0.915788 3 │ 0.879395 0.07271 0.980079 0.655158 4 │ 0.340435 0.756196 0.0697535 0.388578 5 │ 0.714515 0.861872 0.971521 0.176768 ```
### Exercise 4 Create a dictionary holding `column_name => column_vector` pairs using data stored in data frame `df`. Save this dictionary in variable `d`.
Solution ``` julia> d = Dict([n => df[:, n] for n in names(df)]) Dict{String, Vector{Float64}} with 4 entries: "6mTK5evn" => [0.8386, 0.590172, 0.879395, 0.340435, 0.714515] "5Caz55k0" => [0.0353994, 0.0691152, 0.980079, 0.0697535, 0.971521] "K8Inf7ER" => [0.83612, 0.611815, 0.07271, 0.756196, 0.861872] "SRiGemsa" => [0.15547, 0.915788, 0.655158, 0.388578, 0.176768] ``` or (using the `pairs` function; note that this time column names are `Symbol`): ``` julia> Dict(pairs(eachcol(df))) Dict{Symbol, AbstractVector} with 4 entries: Symbol("6mTK5evn") => [0.8386, 0.590172, 0.879395, 0.340435, 0.714515] :SRiGemsa => [0.15547, 0.915788, 0.655158, 0.388578, 0.176768] :K8Inf7ER => [0.83612, 0.611815, 0.07271, 0.756196, 0.861872] Symbol("5Caz55k0") => [0.0353994, 0.0691152, 0.980079, 0.0697535, 0.971521] ```
### Exercise 5 Create a data frame back from dictionary `d` from exercise 4. Compare it with `df`.
Solution ``` julia> DataFrame(d) 5×4 DataFrame Row │ 5Caz55k0 6mTK5evn K8Inf7ER SRiGemsa │ Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────── 1 │ 0.0353994 0.8386 0.83612 0.15547 2 │ 0.0691152 0.590172 0.611815 0.915788 3 │ 0.980079 0.879395 0.07271 0.655158 4 │ 0.0697535 0.340435 0.756196 0.388578 5 │ 0.971521 0.714515 0.861872 0.176768 ``` Note that columns of a data frame are now sorted by their names. This is done for `Dict` objects because such dictionaries do not have a defined order of keys.
### Exercise 6 For data frame `df` compute the dot product between all pairs of its columns. Use the `dot` function from the `LinearAlgebra` module.
Solution ``` julia> using LinearAlgebra julia> using StatsBase julia> pairwise(dot, eachcol(df)) 4×4 Matrix{Float64}: 2.45132 1.99944 1.65026 1.50558 1.99944 2.39336 1.03322 1.18411 1.65026 1.03322 1.9153 0.909744 1.50558 1.18411 0.909744 1.47431 ```
### Exercise 7 Given two data frames: ``` julia> df1 = DataFrame(a=1:2, b=11:12) 2×2 DataFrame Row │ a b │ Int64 Int64 ─────┼────────────── 1 │ 1 11 2 │ 2 12 julia> df2 = DataFrame(a=1:2, c=101:102) 2×2 DataFrame Row │ a c │ Int64 Int64 ─────┼────────────── 1 │ 1 101 2 │ 2 102 ``` vertically concatenate them so that only columns that are present in both data frames are kept. Check the documentation of `vcat` to see how to do it.
Solution ``` julia> vcat(df1, df2, cols=:intersect) 4×1 DataFrame Row │ a │ Int64 ─────┼─────── 1 │ 1 2 │ 2 3 │ 1 4 │ 2 ``` By default you will get an error: ``` julia> vcat(df1, df2) ERROR: ArgumentError: column(s) c are missing from argument(s) 1, and column(s) b are missing from argument(s) 2 ```
### Exercise 8 Now append to `df1` table `df2`, but add only the columns from `df2` that are present in `df1`. Check the documentation of `append!` to see how to do it.
Solution ``` julia> append!(df1, df2, cols=:subset) 4×2 DataFrame Row │ a b │ Int64 Int64? ─────┼──────────────── 1 │ 1 11 2 │ 2 12 3 │ 1 missing 4 │ 2 missing ```
### Exercise 9 Create a `circle` data frame, using the `push!` function that will store 1000 samples of the following process: * draw `x` and `y` uniformly and independently from the [-1,1[ interval; * compute a binary variable `inside` that is `true` if `x^2+y^2 < 1` and is `false` otherwise. Compute summary statistics of this data frame.
Solution ``` circle=DataFrame() for _ in 1:1000 x, y = 2rand()-1, 2rand()-1 inside = x^2 + y^2 < 1 push!(circle, (x=x, y=y, inside=inside)) end describe(circle) ``` We note that mean of variable `inside` is approximately π.
### Exercise 10 Create a scatterplot of `circle` data frame where its `x` and `y` axis will be the plotted points and `inside` variable will determine the color of the plotted point.
Solution ``` using Plots scatter(circle.x, circle.y, color=[i ? "black" : "red" for i in circle.inside], xlabel="x", ylabel="y", legend=false, size=(400, 400)) scatter(circle.x, circle.y, color=[i ? "black" : "red" for i in circle.inside], xlabel="x", ylabel="y", legend=false, aspect_ratio=:equal) ``` In the solution two ways to plot ensuring the ratio between x and y axis is 1 are shown. Note the differences in the produced output between the two methods.