# Bogumił Kamiński, 2021 # Codes for chapter 4 # Code for listing 4.1 aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89] # Code for checking size of a matrix size(aq) size(aq, 1) size(aq, 2) # Code comparing tuple to a vector v = [1, 2, 3] t = (1, 2, 3) v[1] t[1] v[1] = 10 v t[1] = 10 # Code for figure 4.2 using BenchmarkTools @benchmark (1, 2, 3) @benchmark [1, 2, 3] # Code comparing vector and tuple construction [1, 2.0] (1, 2.0) # Code for section 4.1.2 using Statistics mean(aq; dims=1) std(aq; dims=1) map(mean, eachcol(aq)) map(std, eachcol(aq)) map(eachcol(aq)) do col mean(col) end [mean(col) for col in eachcol(aq)] [std(col) for col in eachcol(aq)] # Code for section 4.1.3 [mean(aq[:, j]) for j in axes(aq, 2)] [std(aq[:, j]) for j in axes(aq, 2)] axes(aq, 2) # - change to help mode by pressing `?` key # - type "Base.OneTo" and press Enter [mean(view(aq, :, j)) for j in axes(aq, 2)] [std(@view aq[:, j]) for j in axes(aq, 2)] # Code for section 4.1.4 using BenchmarkTools x = ones(10^7, 10) @btime [mean(@view $x[:, j]) for j in axes($x, 2)]; @btime [mean($x[:, j]) for j in axes($x, 2)]; @btime mean($x, dims=1); # Code for section 4.1.5 [cor(aq[:, i], aq[:, i+1]) for i in 1:2:7] collect(1:2:7) # Code for section 4.1.6 y = aq[:, 2] X = [ones(11) aq[:, 1]] X \ y [[ones(11) aq[:, i]] \ aq[:, i+1] for i in 1:2:7] function R²(x, y) X = [ones(11) x] model = X \ y prediction = X * model error = y - prediction SS_res = sum(v -> v ^ 2, error) mean_y = mean(y) SS_tot = sum(v -> (v - mean_y) ^ 2, y) return 1 - SS_res / SS_tot end [R²(aq[:, i], aq[:, i+1]) for i in 1:2:7] # - change to help mode by pressing `?` key # - type (or copy-paste) "²" and press Enter # Code for section 4.1.7 using Plots scatter(aq[:, 1], aq[:, 2]; legend=false) plot(scatter(aq[:, 1], aq[:, 2]; legend=false), scatter(aq[:, 3], aq[:, 4]; legend=false), scatter(aq[:, 5], aq[:, 6]; legend=false), scatter(aq[:, 7], aq[:, 8]; legend=false)) plot([scatter(aq[:, i], aq[:, i+1]; legend=false) for i in 1:2:7]...) # Code for section 4.2 two_standard = Dict{Int, Int}() for i in [1, 2, 3, 4, 5, 6] for j in [1, 2, 3, 4, 5, 6] s = i + j if haskey(two_standard, s) two_standard[s] += 1 else two_standard[s] = 1 end end end two_standard keys(two_standard) values(two_standard) using Plots scatter(collect(keys(two_standard)), collect(values(two_standard)); legend=false, xaxis=2:12) all_dice = [[1, x2, x3, x4, x5, x6] for x2 in 2:11 for x3 in x2:11 for x4 in x3:11 for x5 in x4:11 for x6 in x5:11] for d1 in all_dice, d2 in all_dice test = Dict{Int, Int}() for i in d1, j in d2 s = i + j if haskey(test, s) test[s] += 1 else test[s] = 1 end end if test == two_standard println(d1, " ", d2) end end # Code for section 4.3 aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89] dataset1 = (x=aq[:, 1], y=aq[:, 2]) dataset1[1] dataset1.x # Code for listing 4.2 data = (set1=(x=aq[:, 1], y=aq[:, 2]), set2=(x=aq[:, 3], y=aq[:, 4]), set3=(x=aq[:, 5], y=aq[:, 6]), set4=(x=aq[:, 7], y=aq[:, 8])) # Code for section 4.3.2 using Statistics map(s -> mean(s.x), data) map(s -> cor(s.x, s.y), data) using GLM model = lm(@formula(y ~ x), data.set1) r2(model) # Code for section 4.3.3 model.mm x = [3, 1, 3, 2] unique(x) x unique!(x) x empty_field!(nt, i) = empty!(nt[i]) nt = (dict = Dict("a" => 1, "b" => 2), int=10) empty_field!(nt, 1) nt