# Bogumił Kamiński, 2022 # Codes for chapter 10 # Code for section 10.1 aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]; using DataFrames # Code for listing 10.1 aq1 = DataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"]) DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4]) # Code for creating DataFrame with automatic column names DataFrame(aq, :auto) # Codes for creating DataFrame from vector of vectors aq_vec = collect(eachcol(aq)) DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"]) DataFrame(aq_vec, :auto) # Codes for section 10.1.2 data = (set1=(x=aq[:, 1], y=aq[:, 2]), set2=(x=aq[:, 3], y=aq[:, 4]), set3=(x=aq[:, 5], y=aq[:, 6]), set4=(x=aq[:, 7], y=aq[:, 8])); data.set1.x DataFrame(x1=data.set1.x, y1=data.set1.y, x2=data.set2.x, y2=data.set2.y, x3=data.set3.x, y3=data.set3.y, x4=data.set4.x, y4=data.set4.y) DataFrame(:x1 => data.set1.x, :y1 => data.set1.y, :x2 => data.set2.x, :y2 => data.set2.y, :x3 => data.set3.x, :y3 => data.set3.y, :x4 => data.set4.x, :y4 => data.set4.y) DataFrame([:x1 => data.set1.x, :y1 => data.set1.y, :x2 => data.set2.x, :y2 => data.set2.y, :x3 => data.set3.x, :y3 => data.set3.y, :x4 => data.set4.x, :y4 => data.set4.y]); [(i, v) for i in 1:4 for v in [:x, :y]] [string(v, i) for i in 1:4 for v in [:x, :y]] [string(v, i) => getproperty(data[i], v) for i in 1:4 for v in [:x, :y]] DataFrame([string(v, i) => getproperty(data[i], v) for i in 1:4 for v in [:x, :y]]); data_dict = Dict([string(v, i) => getproperty(data[i], v) for i in 1:4 for v in [:x, :y]]) collect(data_dict) DataFrame(data_dict) df1 = DataFrame(x1=data.set1.x) df1.x1 === data.set1.x df2 = DataFrame(x1=data.set1.x; copycols=false) df2.x1 === data.set1.x df = DataFrame(x=1:3, y=1) df.x DataFrame(x=[1], y=[1, 2, 3]) using RCall r_df = R"data.frame(a=1:6, b=1:2, c=1:3)" julia_df = rcopy(r_df) # Codes for section 10.1.3 data.set1 DataFrame(data.set1) DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)]) data # Code for listing 10.2 aq2 = DataFrame(data) # Codes for section 10.1.4 aq1 using Statistics using StatsBase cor_mat = pairwise(cor, eachcol(aq1)) using Plots heatmap(names(aq1), names(aq1), cor_mat; aspect_ratio=:equal, size=(400, 400), rightmargin=5Plots.mm) # Codes for listing 10.3 data_dfs = map(DataFrame, data) # Codes for vertical concatenation examples vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4) vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4; source="source_id") vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4; source="source_id"=>string.("set", 1:4)) reduce(vcat, collect(data_dfs); source="source_id"=>string.("set", 1:4)) # Code for listing 10.4 df1 = DataFrame(a=1:3, b=11:13) df2 = DataFrame(a=4:6, c=24:26) vcat(df1, df2) vcat(df1, df2; cols=:union) # Code for listing 10.5 df_agg = DataFrame() append!(df_agg, data_dfs.set1) append!(df_agg, data_dfs.set2) # Code for appending tables to a data frame df_agg = DataFrame() append!(df_agg, data.set1) append!(df_agg, data.set2) # Code for promote keyword argument df1 = DataFrame(a=1:3, b=11:13) df2 = DataFrame(a=4:6, b=[14, missing, 16]) append!(df1, df2) append!(df1, df2; promote=true) # Code for section 10.2.3 df = DataFrame() push!(df, (a=1, b=2)) push!(df, (a=3, b=4)) df = DataFrame(a=Int[], b=Int[]) push!(df, [1, 2]) push!(df, [3, 4]) function sim_step(current) dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1))) return (x=current.x + dx, y=current.y + dy) end using BenchmarkTools @btime rand(((1,0), (-1,0), (0,1), (0,-1))); dx, dy = (10, 20) dx dy using FreqTables using Random Random.seed!(1234); proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7]) using Random Random.seed!(6); walk = DataFrame(x=0, y=0) for _ in 1:10 current = walk[end, :] push!(walk, sim_step(current)) end walk using Plots plot(walk.x, walk.y; legend=false, series_annotations=1:11, xticks=range(extrema(walk.x)...), yticks=range(extrema(walk.y)...)) extrema(walk.y) range(1, 5) (3/4)^9 # Code for listing 10.6 function walk_unique() #A walk = DataFrame(x=0, y=0) for _ in 1:10 current = walk[end, :] push!(walk, sim_step(current)) end return nrow(unique(walk)) == nrow(walk) #B end Random.seed!(2); proptable([walk_unique() for _ in 1:10^5]) # code for serialization using Serialization serialize("walk.bin", walk) deserialize("walk.bin") == walk