update up to chapter 9

This commit is contained in:
Bogumił Kamiński 2022-02-13 11:59:23 +01:00
parent e1d5277f8c
commit ab6b8f18f3
4 changed files with 637 additions and 618 deletions

170
ch08.jl
View File

@ -1,8 +1,8 @@
# Bogumił Kamiński, 2022
# Codes for chapter 6
# Codes for chapter 8
# Code for section 6.1
# Code for section 8.1
if isfile("puzzles.csv.bz2")
@info "file already present"
@ -25,22 +25,27 @@ end
readlines("puzzles.csv")
# Code for section 6.2
# Code for section 8.2
using CSV
using DataFrames
puzzles = CSV.read("puzzles.csv", DataFrame);
CSV.read(plain, DataFrame);
puzzles2 = CSV.read(plain, DataFrame;
header=["PuzzleId", "FEN", "Moves",
"Rating","RatingDeviation",
"Popularity", "NbPlays",
"Themes","GameUrl"]);
puzzles == puzzles2
compressed = nothing
plain = nothing
# Code for listing 6.1
# Code for listing 8.1
puzzles
# Code for listing 6.2
# Code for listing 8.2
describe(puzzles)
@ -52,7 +57,13 @@ nrow(puzzles)
names(puzzles)
# Code for section 6.3
CSV.write("puzzles2.csv", puzzles)
read("puzzles2.csv")
read("puzzles2.csv") == read("puzzles.csv")
# Code for section 8.3
puzzles.Rating
@ -101,148 +112,3 @@ plot(histogram(puzzles.Rating, label="Rating"),
plot([histogram(puzzles[!, col]; label=col) for
col in ["Rating", "RatingDeviation",
"Popularity", "NbPlays"]]...)
# Code for section 6.4
using Statistics
plays_lo = median(puzzles.NbPlays)
puzzles.NbPlays .> plays_lo
puzzles.NbPlays > plays_lo
rating_lo = 1500
rating_hi = quantile(puzzles.Rating, 0.99)
rating_lo .< puzzles.Rating .< rating_hi
row_selector = (puzzles.NbPlays .> plays_lo) .&&
(rating_lo .< puzzles.Rating .< rating_hi)
sum(row_selector)
count(row_selector)
# Code for listing 6.3
good = puzzles[row_selector, ["Rating", "Popularity"]]
# Code for plotting histograms
plot(histogram(good.Rating; label="Rating"),
histogram(good.Popularity; label="Popularity"))
# Code for column selectors
puzzles[1, "Rating"]
puzzles[:, "Rating"]
row1 = puzzles[1, ["Rating", "Popularity"]]
row1["Rating"]
row1[:Rating]
row1[1]
row1.Rating
row1."Rating"
good = puzzles[row_selector, ["Rating", "Popularity"]]
good[1, "Rating"]
good[1, :]
good[:, "Rating"]
good[:, :]
names(puzzles, ["Rating", "Popularity"])
names(puzzles, [:Rating, :Popularity])
names(puzzles, [4, 6])
names(puzzles, [false, false, false, true, false, true, false, false, false])
names(puzzles, r"Rating")
names(puzzles, Not([4, 6]))
names(puzzles, Not(r"Rating"))
names(puzzles, Between("Rating", "Popularity"))
names(puzzles, :)
names(puzzles, All())
names(puzzles, Cols(r"Rating", "NbPlays"))
names(puzzles, Cols(startswith("P")))
names(puzzles, startswith("P"))
names(puzzles, Real)
names(puzzles, AbstractString)
puzzles[:, names(puzzles, Real)]
# Code for row subsetting
df1 = puzzles[:, ["Rating", "Popularity"]];
df2 = puzzles[!, ["Rating", "Popularity"]];
df1 == df2
df1 == puzzles
df2 == puzzles
df1.Rating === puzzles.Rating
df1.Popularity === puzzles.Popularity
df2.Rating === puzzles.Rating
df2.Popularity === puzzles.Popularity
@benchmark $puzzles[:, ["Rating", "Popularity"]]
@benchmark $puzzles[!, ["Rating", "Popularity"]]
puzzles[1, 1]
puzzles[[1], 1]
puzzles[1, [1]]
puzzles[[1], [1]]
# Code for making views
@view puzzles[1, 1]
@view puzzles[[1], 1]
@view puzzles[1, [1]]
@view puzzles[[1], [1]]
@btime $puzzles[$row_selector, ["Rating", "Popularity"]];
@btime @view $puzzles[$row_selector, ["Rating", "Popularity"]];
parentindices(@view puzzles[row_selector, ["Rating", "Popularity"]])
# Code for section 6.5
describe(good)
rating_mapping = Dict{Int, Vector{Int}}()
for (i, rating) in enumerate(good.Rating)
if haskey(rating_mapping, rating)
push!(rating_mapping[rating], i)
else
rating_mapping[rating] = [i]
end
end
rating_mapping
good[rating_mapping[2108], :]
unique(good[rating_mapping[2108], :].Rating)
using Statistics
mean(good[rating_mapping[2108], "Popularity"])
ratings = unique(good.Rating)
mean_popularities = map(ratings) do rating
indices = rating_mapping[rating]
popularities = good[indices, "Popularity"]
return mean(popularities)
end
scatter(ratings, mean_popularities;
xlabel="rating", ylabel="mean popularity", legend=false)
import Loess
model = Loess.loess(ratings, mean_popularities);
ratings_predict = float.(sort(ratings))
popularity_predict = Loess.predict(model, ratings_predict)
plot!(ratings_predict, popularity_predict; width=5, color="black")

326
ch09.jl
View File

@ -1,279 +1,153 @@
# Bogumił Kamiński, 2022
# Codes for chapter 7
# Codes for chapter 9
# Code for section 7.1
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
set2=(x=aq[:, 3], y=aq[:, 4]),
set3=(x=aq[:, 5], y=aq[:, 6]),
set4=(x=aq[:, 7], y=aq[:, 8]));
# Code for section 9.1
using DataFrames
using CSV
using Plots
puzzles = CSV.read("puzzles.csv", DataFrame);
# Code for listing 7.1
using Statistics
plays_lo = median(puzzles.NbPlays)
puzzles.NbPlays .> plays_lo
aq1 = ataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4])
puzzles.NbPlays > plays_lo
# Code for creating DataFrame with automatic column names
rating_lo = 1500
rating_hi = quantile(puzzles.Rating, 0.99)
rating_lo .< puzzles.Rating .< rating_hi
DataFrame(aq, :auto)
row_selector = (puzzles.NbPlays .> plays_lo) .&&
(rating_lo .< puzzles.Rating .< rating_hi)
# Codes for creating DataFrame from vector of vectors
sum(row_selector)
count(row_selector)
aq_vec = collect(eachcol(aq))
DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
DataFrame(aq_vec, :auto)
# Code for listing 9.1
# Codes for section 7.1.2
good = puzzles[row_selector, ["Rating", "Popularity"]]
data.set1.x
# Code for plotting histograms
DataFrame(x1=data.set1.x, y1=data.set1.y,
x2=data.set2.x, y2=data.set2.y,
x3=data.set3.x, y3=data.set3.y,
x4=data.set4.x, y4=data.set4.y)
plot(histogram(good.Rating; label="Rating"),
histogram(good.Popularity; label="Popularity"))
DataFrame(:x1 => data.set1.x, :y1 => data.set1.y,
:x2 => data.set2.x, :y2 => data.set2.y,
:x3 => data.set3.x, :y3 => data.set3.y,
:x4 => data.set4.x, :y4 => data.set4.y)
# Code for column selectors
DataFrame([:x1 => data.set1.x, :y1 => data.set1.y,
:x2 => data.set2.x, :y2 => data.set2.y,
:x3 => data.set3.x, :y3 => data.set3.y,
:x4 => data.set4.x, :y4 => data.set4.y]);
puzzles[1, "Rating"]
[(i, v) for i in 1:4 for v in [:x, :y]]
puzzles[:, "Rating"]
[string(v, i) for i in 1:4 for v in [:x, :y]]
row1 = puzzles[1, ["Rating", "Popularity"]]
[string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]]
row1["Rating"]
row1[:Rating]
row1[1]
row1.Rating
row1."Rating"
DataFrame([string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]]);
good = puzzles[row_selector, ["Rating", "Popularity"]]
data_dict = Dict([string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]])
collect(data_dict)
good[1, "Rating"]
good[1, :]
good[:, "Rating"]
good[:, :]
DataFrame(data_dict)
names(puzzles, ["Rating", "Popularity"])
names(puzzles, [:Rating, :Popularity])
names(puzzles, [4, 6])
names(puzzles, [false, false, false, true, false, true, false, false, false])
names(puzzles, r"Rating")
names(puzzles, Not([4, 6]))
names(puzzles, Not(r"Rating"))
names(puzzles, Between("Rating", "Popularity"))
names(puzzles, :)
names(puzzles, All())
names(puzzles, Cols(r"Rating", "NbPlays"))
names(puzzles, Cols(startswith("P")))
df1 = DataFrame(x1=data.set1.x)
df1.x1 === data.set1.x
names(puzzles, startswith("P"))
df2 = DataFrame(x1=data.set1.x; copycols=false)
df2.x1 === data.set1.x
names(puzzles, Real)
df = DataFrame(x=1:3, y=1)
df.x
names(puzzles, AbstractString)
DataFrame(x=[1], y=[1, 2, 3])
puzzles[:, names(puzzles, Real)]
# Codes for section 7.1.3
# Code for row subsetting
data.set1
DataFrame(data.set1)
df1 = puzzles[:, ["Rating", "Popularity"]];
df2 = puzzles[!, ["Rating", "Popularity"]];
DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)])
df1 == df2
df1 == puzzles
df2 == puzzles
data
df1.Rating === puzzles.Rating
df1.Popularity === puzzles.Popularity
df2.Rating === puzzles.Rating
df2.Popularity === puzzles.Popularity
# Code for listing 7.2
@benchmark $puzzles[:, ["Rating", "Popularity"]]
@benchmark $puzzles[!, ["Rating", "Popularity"]]
aq2 = DataFrame(data)
puzzles[1, 1]
puzzles[[1], 1]
puzzles[1, [1]]
puzzles[[1], [1]]
# Codes for listing 7.3
# Code for making views
data_dfs = map(DataFrame, data)
@view puzzles[1, 1]
# Codes for vertical concatenation examples
@view puzzles[[1], 1]
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4)
@view puzzles[1, [1]]
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
source="source_id")
@view puzzles[[1], [1]]
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
source="source_id"=>string.("set", 1:4))
@btime $puzzles[$row_selector, ["Rating", "Popularity"]];
@btime @view $puzzles[$row_selector, ["Rating", "Popularity"]];
reduce(vcat, collect(data_dfs);
source="source_id"=>string.("set", 1:4))
parentindices(@view puzzles[row_selector, ["Rating", "Popularity"]])
# Code for listing 7.4
# Code for section 9.2
df1 = DataFrame(a=1:3, b=11:13)
df2 = DataFrame(a=4:6, c=24:26)
vcat(df1, df2)
vcat(df1, df2; cols=:union)
describe(good)
# Code for listing 7.5
df_agg = DataFrame()
append!(df_agg, data_dfs.set1)
append!(df_agg, data_dfs.set2)
# Code for appending tables to a data frame
df_agg = DataFrame()
append!(df_agg, data.set1)
append!(df_agg, data.set2)
# Code for promote keyword argument
df1 = DataFrame(a=1:3, b=11:13)
df2 = DataFrame(a=4:6, b=[14, missing, 16])
append!(df1, df2)
append!(df1, df2; promote=true)
# Code for section 7.2.3
df = DataFrame()
push!(df, (a=1, b=2))
push!(df, (a=3, b=4))
df = DataFrame(a=Int[], b=Int[])
push!(df, [1, 2])
push!(df, [3, 4])
function sim_step(current)
dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1)))
return (x=current.x + dx, y=current.y + dy)
end
using BenchmarkTools
@btime rand(((1,0), (-1,0), (0,1), (0,-1)));
dx, dy = (10, 20)
dx
dy
using FreqTables
using Random
Random.seed!(1234);
proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7])
using Random
Random.seed!(6);
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
end
walk
plot(walk.x, walk.y;
legend=false,
series_annotations=1:11,
xticks=range(extrema(walk.x)...),
yticks=range(extrema(walk.y)...))
extrema(walk.y)
range(1, 5)
(3/4)^9
# Code for listing 7.6
function walk_unique() #A
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
rating_mapping = Dict{Int, Vector{Int}}()
for (i, rating) in enumerate(good.Rating)
if haskey(rating_mapping, rating)
push!(rating_mapping[rating], i)
else
rating_mapping[rating] = [i]
end
return nrow(unique(walk)) == nrow(walk) #B
end
Random.seed!(2);
proptable([walk_unique() for _ in 1:10^5])
rating_mapping
# Code for a note on conversion
good[rating_mapping[2108], :]
x = [1.5]
x[1] = 1
x
unique(good[rating_mapping[2108], :].Rating)
# Code from section 7.3.1
using Statistics
mean(good[rating_mapping[2108], "Popularity"])
Matrix(walk)
Matrix{Any}(walk)
Matrix{String}(walk)
ratings = unique(good.Rating)
plot(walk)
plot(Matrix(walk); labels=["x" "y"] , legend=:topleft)
# Code from section 7.3.2
Tables.columntable(walk)
using BenchmarkTools
function mysum(table)
s = 0 #A
for v in table.x #B
s += v
end
return s
end
df = DataFrame(x=1:1_000_000);
@btime mysum($df)
tab = Tables.columntable(df);
@btime mysum($tab)
@code_warntype mysum(df)
@code_warntype mysum(tab)
typeof(tab)
function barrier_mysum2(x)
s = 0
for v in x
s += v
end
return s
end
mysum2(table) = barrier_mysum2(table.x)
@btime mysum2($df)
df = DataFrame(a=[1, 1, 2], b=[1, 1, 2])
unique(df)
tab = Tables.columntable(df)
unique(tab)
# Code from section 7.3.3
Tables.rowtable(walk)
nti = Tables.namedtupleiterator(walk)
for v in nti
println(v)
mean_popularities = map(ratings) do rating
indices = rating_mapping[rating]
popularities = good[indices, "Popularity"]
return mean(popularities)
end
er = eachrow(walk)
er[1]
er[end]
ec = eachcol(walk)
ec[1]
ec[end]
scatter(ratings, mean_popularities;
xlabel="rating", ylabel="mean popularity", legend=false)
identity.(eachcol(walk))
import Loess
model = Loess.loess(ratings, mean_popularities);
ratings_predict = float.(sort(ratings))
popularity_predict = Loess.predict(model, ratings_predict)
df = DataFrame(x=1:2, b=["a", "b"])
identity.(eachcol(df))
plot!(ratings_predict, popularity_predict; width=5, color="black")

475
ch10.jl
View File

@ -1,284 +1,279 @@
# Bogumił Kamiński, 2022
# Codes for chapter 8
# Codes for chapter 7
# Codes for section 8.1
# Code for section 7.1
# Code for listing 8.1
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
import Downloads
using SHA
git_zip = "git_web_ml.zip"
if !isfile(git_zip)
Downloads.download("https://snap.stanford.edu/data/" *
"git_web_ml.zip",
git_zip)
end
isfile(git_zip)
open(sha256, git_zip) == [0x56, 0xc0, 0xc1, 0xc2,
0xc4, 0x60, 0xdc, 0x4c,
0x7b, 0xf8, 0x93, 0x57,
0xb1, 0xfe, 0xc0, 0x20,
0xf4, 0x5e, 0x2e, 0xce,
0xba, 0xb8, 0x1d, 0x13,
0x1d, 0x07, 0x3b, 0x10,
0xe2, 0x8e, 0xc0, 0x31]
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
set2=(x=aq[:, 3], y=aq[:, 4]),
set3=(x=aq[:, 5], y=aq[:, 6]),
set4=(x=aq[:, 7], y=aq[:, 8]));
# Code for opeining a zip archive
import ZipFile
git_archive = ZipFile.Reader(git_zip)
# Code for listing 8.2
function ingest_to_df(archive::ZipFile.Reader, filename::AbstractString)
idx = only(findall(x -> x.name == filename, archive.files))
return CSV.read(read(archive.files[idx]), DataFrame)
end
# Code for working with zip archive
git_archive.files
git_archive.files[2].name
findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files)
findall(x -> x.name == "", git_archive.files)
only(findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files))
only(findall(x -> x.name == "", git_archive.files))
# Code for listing 8.3
using CSV
using DataFrames
edges_df = ingest_to_df(git_archive, "git_web_ml/musae_git_edges.csv");
classes_df = ingest_to_df(git_archive, "git_web_ml/musae_git_target.csv");
close(git_archive)
summary(edges_df)
describe(edges_df, :min, :max, :mean, :nmissing, :eltype)
summary(classes_df)
describe(classes_df, :min, :max, :mean, :nmissing, :eltype)
# Code for updating data frame columns using broadcasting
# Code for listing 7.1
edges_df .+= 1
classes_df.id .+= 1
aq1 = ataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4])
# Code for examples of data frame broadcasting
# Code for creating DataFrame with automatic column names
df = DataFrame(a=1:3, b=[4, missing, 5])
df .^ 2
coalesce.(df, 0)
df .+ [10, 11, 12]
DataFrame(aq, :auto)
# Code for checking the order of :id column in a data frame
# Codes for creating DataFrame from vector of vectors
classes_df.id == axes(classes_df, 1)
aq_vec = collect(eachcol(aq))
DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
DataFrame(aq_vec, :auto)
# Code for the difference between ! and : in broadcasting assignment
# Codes for section 7.1.2
df = DataFrame(a=1:3, b=1:3)
df[!, :a] .= "x"
df[:, :b] .= "x"
df
data.set1.x
# Code for the difference between ! and : in assignment
DataFrame(x1=data.set1.x, y1=data.set1.y,
x2=data.set2.x, y2=data.set2.y,
x3=data.set3.x, y3=data.set3.y,
x4=data.set4.x, y4=data.set4.y)
df = DataFrame(a=1:3, b=1:3, c=1:3)
df[!, :a] = ["x", "y", "z"]
df[:, :b] = ["x", "y", "z"]
df[:, :c] = [11, 12, 13]
df
DataFrame(:x1 => data.set1.x, :y1 => data.set1.y,
:x2 => data.set2.x, :y2 => data.set2.y,
:x3 => data.set3.x, :y3 => data.set3.y,
:x4 => data.set4.x, :y4 => data.set4.y)
# Codes for section 8.2
DataFrame([:x1 => data.set1.x, :y1 => data.set1.y,
:x2 => data.set2.x, :y2 => data.set2.y,
:x3 => data.set3.x, :y3 => data.set3.y,
:x4 => data.set4.x, :y4 => data.set4.y]);
# Code from listing 8.4
[(i, v) for i in 1:4 for v in [:x, :y]]
using Graphs
gh = SimpleGraph(nrow(classes_df))
for (from, to) in eachrow(edges_df)
add_edge!(gh, from, to)
end
gh
ne(gh)
nv(gh)
[string(v, i) for i in 1:4 for v in [:x, :y]]
# Code for iterator destruction in iteration specification
[string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]]
mat = [1 2; 3 4; 5 6]
for (x1, x2) in eachrow(mat)
@show x1, x2
end
DataFrame([string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]]);
# Code for getting degrees of nodes in the graph
data_dict = Dict([string(v, i) => getproperty(data[i], v)
for i in 1:4 for v in [:x, :y]])
collect(data_dict)
degree(gh)
DataFrame(data_dict)
# Code for adding a column to a data frame
df1 = DataFrame(x1=data.set1.x)
df1.x1 === data.set1.x
classes_df.deg = degree(gh)
df2 = DataFrame(x1=data.set1.x; copycols=false)
df2.x1 === data.set1.x
# Code for the difference between ! and : when adding a column
df = DataFrame(x=1:3, y=1)
df.x
DataFrame(x=[1], y=[1, 2, 3])
# Codes for section 7.1.3
data.set1
DataFrame(data.set1)
DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)])
data
# Code for listing 7.2
aq2 = DataFrame(data)
# Codes for listing 7.3
data_dfs = map(DataFrame, data)
# Codes for vertical concatenation examples
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4)
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
source="source_id")
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
source="source_id"=>string.("set", 1:4))
reduce(vcat, collect(data_dfs);
source="source_id"=>string.("set", 1:4))
# Code for listing 7.4
df1 = DataFrame(a=1:3, b=11:13)
df2 = DataFrame(a=4:6, c=24:26)
vcat(df1, df2)
vcat(df1, df2; cols=:union)
# Code for listing 7.5
df_agg = DataFrame()
append!(df_agg, data_dfs.set1)
append!(df_agg, data_dfs.set2)
# Code for appending tables to a data frame
df_agg = DataFrame()
append!(df_agg, data.set1)
append!(df_agg, data.set2)
# Code for promote keyword argument
df1 = DataFrame(a=1:3, b=11:13)
df2 = DataFrame(a=4:6, b=[14, missing, 16])
append!(df1, df2)
append!(df1, df2; promote=true)
# Code for section 7.2.3
df = DataFrame()
x = [1, 2, 3]
df[!, :x1] = x
df[:, :x2] = x
df
df.x1 === x
df.x2 === x
df.x2 == x
push!(df, (a=1, b=2))
push!(df, (a=3, b=4))
# Code for creating a column using broadcasting
df = DataFrame(a=Int[], b=Int[])
push!(df, [1, 2])
push!(df, [3, 4])
df.x3 .= 1
df
# Code for edge iterator of a graph
edges(gh)
e1 = first(edges(gh))
dump(e1)
e1.src
e1.dst
# Code for listing 8.5
function deg_class(gh, class)
deg_ml = zeros(Int, length(class))
deg_web = zeros(Int, length(class))
for edge in edges(gh)
a, b = edge.src, edge.dst
if class[b] == 1
deg_ml[a] += 1
else
deg_web[a] += 1
end
if class[a] == 1
deg_ml[b] += 1
else
deg_web[b] += 1
end
end
return (deg_ml, deg_web)
function sim_step(current)
dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1)))
return (x=current.x + dx, y=current.y + dy)
end
# Code for computing machine learning and web neighbors for gh graph
using BenchmarkTools
@btime rand(((1,0), (-1,0), (0,1), (0,-1)));
classes_df.deg_ml, classes_df.deg_web =
deg_class(gh, classes_df.ml_target)
# Code for checking type stability of deg_class function
@time deg_class(gh, classes_df.ml_target);
@code_warntype deg_class(gh, classes_df.ml_target)
# Code for checking the classes_df summary statistics
describe(classes_df, :min, :max, :mean, :std)
# Code for average degree of node in the graph
2 * ne(gh) / nv(gh)
# Code for checking correctness of computations
classes_df.deg_ml + classes_df.deg_web == classes_df.deg
# Code for showing that DataFrames.jl checks consistency of stored objects
df = DataFrame(a=1, b=11)
push!(df.a, 2)
df
# Codes for section 8.3
# Code for computing groupwise means of columns
using Statistics
for type in [0, 1], col in ["deg_ml", "deg_web"]
println((type, col, mean(classes_df[classes_df.ml_target .== type, col])))
end
gdf = groupby(classes_df, :ml_target)
combine(gdf,
:deg_ml => mean => :mean_deg_ml,
:deg_web => mean => :mean_deg_web)
using DataFramesMeta
@combine(gdf,
:mean_deg_ml = mean(:deg_ml),
:mean_deg_web = mean(:deg_web))
# Code for simple plotting of relationship between developer degree and type
using Plots
scatter(classes_df.deg_ml, classes_df.deg_web;
color=[x == 1 ? "black" : "gray" for x in classes_df.ml_target],
xlabel="degree ml", ylabel="degree web", labels=false)
# Code for aggregation of degree data
agg_df = combine(groupby(classes_df, [:deg_ml, :deg_web]),
:ml_target => (x -> 1 - mean(x)) => :web_mean)
# Code for comparison how Julia parses expressions
:ml_target => (x -> 1 - mean(x)) => :web_mean
:ml_target => x -> 1 - mean(x) => :web_mean
# Code for aggregation using DataFramesMeta.jl
@combine(groupby(classes_df, [:deg_ml, :deg_web]),
:web_mean = 1 - mean(:ml_target))
# Code for getting summary information about the aggregated data frame
describe(agg_df)
# Code for log1p function
log1p(0)
# Code for listing 8.6
function gen_ticks(maxv)
max2 = round(Int, log2(maxv))
tick = [0; 2 .^ (0:max2)]
return (log1p.(tick), tick)
end
log1pjitter(x) = log1p(x) - 0.05 + rand() / 10
dx, dy = (10, 20)
dx
dy
using FreqTables
using Random
Random.seed!(1234);
scatter(log1pjitter.(agg_df.deg_ml),
log1pjitter.(agg_df.deg_web);
zcolor=agg_df.web_mean,
xlabel="degree ml", ylabel="degree web",
markersize=2, markerstrokewidth=0, markeralpha=0.8,
legend=:topleft, labels = "fraction web",
xticks=gen_ticks(maximum(classes_df.deg_ml)),
yticks=gen_ticks(maximum(classes_df.deg_web)))
proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7])
# Code for fitting logistic regression model
using Random
Random.seed!(6);
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
end
walk
using GLM
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)), classes_df, Binomial(), LogitLink())
plot(walk.x, walk.y;
legend=false,
series_annotations=1:11,
xticks=range(extrema(walk.x)...),
yticks=range(extrema(walk.y)...))
# Code for inspecting @formula result
extrema(walk.y)
@formula(ml_target~log1p(deg_ml)+log1p(deg_web))
range(1, 5)
# Code for inserting columns to a data frame
(3/4)^9
df = DataFrame(x=1:3)
insertcols!(df, :y => 4:6)
insertcols!(df, :y => 4:6)
insertcols!(df, :z => 1)
# Code for listing 7.6
insertcols!(df, 1, :a => 0)
insertcols!(df, :x, :pre_x => 2)
insertcols!(df, :x, :post_x => 3, after=true)
function walk_unique() #A
walk = DataFrame(x=0, y=0)
for _ in 1:10
current = walk[end, :]
push!(walk, sim_step(current))
end
return nrow(unique(walk)) == nrow(walk) #B
end
Random.seed!(2);
proptable([walk_unique() for _ in 1:10^5])
# Code for a note on conversion
x = [1.5]
x[1] = 1
x
# Code from section 7.3.1
Matrix(walk)
Matrix{Any}(walk)
Matrix{String}(walk)
plot(walk)
plot(Matrix(walk); labels=["x" "y"] , legend=:topleft)
# Code from section 7.3.2
Tables.columntable(walk)
using BenchmarkTools
function mysum(table)
s = 0 #A
for v in table.x #B
s += v
end
return s
end
df = DataFrame(x=1:1_000_000);
@btime mysum($df)
tab = Tables.columntable(df);
@btime mysum($tab)
@code_warntype mysum(df)
@code_warntype mysum(tab)
typeof(tab)
function barrier_mysum2(x)
s = 0
for v in x
s += v
end
return s
end
mysum2(table) = barrier_mysum2(table.x)
@btime mysum2($df)
df = DataFrame(a=[1, 1, 2], b=[1, 1, 2])
unique(df)
tab = Tables.columntable(df)
unique(tab)
# Code from section 7.3.3
Tables.rowtable(walk)
nti = Tables.namedtupleiterator(walk)
for v in nti
println(v)
end
er = eachrow(walk)
er[1]
er[end]
ec = eachcol(walk)
ec[1]
ec[end]
identity.(eachcol(walk))
df = DataFrame(x=1:2, b=["a", "b"])
identity.(eachcol(df))

284
ch12.jl Normal file
View File

@ -0,0 +1,284 @@
# Bogumił Kamiński, 2022
# Codes for chapter 8
# Codes for section 8.1
# Code for listing 8.1
import Downloads
using SHA
git_zip = "git_web_ml.zip"
if !isfile(git_zip)
Downloads.download("https://snap.stanford.edu/data/" *
"git_web_ml.zip",
git_zip)
end
isfile(git_zip)
open(sha256, git_zip) == [0x56, 0xc0, 0xc1, 0xc2,
0xc4, 0x60, 0xdc, 0x4c,
0x7b, 0xf8, 0x93, 0x57,
0xb1, 0xfe, 0xc0, 0x20,
0xf4, 0x5e, 0x2e, 0xce,
0xba, 0xb8, 0x1d, 0x13,
0x1d, 0x07, 0x3b, 0x10,
0xe2, 0x8e, 0xc0, 0x31]
# Code for opeining a zip archive
import ZipFile
git_archive = ZipFile.Reader(git_zip)
# Code for listing 8.2
function ingest_to_df(archive::ZipFile.Reader, filename::AbstractString)
idx = only(findall(x -> x.name == filename, archive.files))
return CSV.read(read(archive.files[idx]), DataFrame)
end
# Code for working with zip archive
git_archive.files
git_archive.files[2].name
findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files)
findall(x -> x.name == "", git_archive.files)
only(findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files))
only(findall(x -> x.name == "", git_archive.files))
# Code for listing 8.3
using CSV
using DataFrames
edges_df = ingest_to_df(git_archive, "git_web_ml/musae_git_edges.csv");
classes_df = ingest_to_df(git_archive, "git_web_ml/musae_git_target.csv");
close(git_archive)
summary(edges_df)
describe(edges_df, :min, :max, :mean, :nmissing, :eltype)
summary(classes_df)
describe(classes_df, :min, :max, :mean, :nmissing, :eltype)
# Code for updating data frame columns using broadcasting
edges_df .+= 1
classes_df.id .+= 1
# Code for examples of data frame broadcasting
df = DataFrame(a=1:3, b=[4, missing, 5])
df .^ 2
coalesce.(df, 0)
df .+ [10, 11, 12]
# Code for checking the order of :id column in a data frame
classes_df.id == axes(classes_df, 1)
# Code for the difference between ! and : in broadcasting assignment
df = DataFrame(a=1:3, b=1:3)
df[!, :a] .= "x"
df[:, :b] .= "x"
df
# Code for the difference between ! and : in assignment
df = DataFrame(a=1:3, b=1:3, c=1:3)
df[!, :a] = ["x", "y", "z"]
df[:, :b] = ["x", "y", "z"]
df[:, :c] = [11, 12, 13]
df
# Codes for section 8.2
# Code from listing 8.4
using Graphs
gh = SimpleGraph(nrow(classes_df))
for (from, to) in eachrow(edges_df)
add_edge!(gh, from, to)
end
gh
ne(gh)
nv(gh)
# Code for iterator destruction in iteration specification
mat = [1 2; 3 4; 5 6]
for (x1, x2) in eachrow(mat)
@show x1, x2
end
# Code for getting degrees of nodes in the graph
degree(gh)
# Code for adding a column to a data frame
classes_df.deg = degree(gh)
# Code for the difference between ! and : when adding a column
df = DataFrame()
x = [1, 2, 3]
df[!, :x1] = x
df[:, :x2] = x
df
df.x1 === x
df.x2 === x
df.x2 == x
# Code for creating a column using broadcasting
df.x3 .= 1
df
# Code for edge iterator of a graph
edges(gh)
e1 = first(edges(gh))
dump(e1)
e1.src
e1.dst
# Code for listing 8.5
function deg_class(gh, class)
deg_ml = zeros(Int, length(class))
deg_web = zeros(Int, length(class))
for edge in edges(gh)
a, b = edge.src, edge.dst
if class[b] == 1
deg_ml[a] += 1
else
deg_web[a] += 1
end
if class[a] == 1
deg_ml[b] += 1
else
deg_web[b] += 1
end
end
return (deg_ml, deg_web)
end
# Code for computing machine learning and web neighbors for gh graph
classes_df.deg_ml, classes_df.deg_web =
deg_class(gh, classes_df.ml_target)
# Code for checking type stability of deg_class function
@time deg_class(gh, classes_df.ml_target);
@code_warntype deg_class(gh, classes_df.ml_target)
# Code for checking the classes_df summary statistics
describe(classes_df, :min, :max, :mean, :std)
# Code for average degree of node in the graph
2 * ne(gh) / nv(gh)
# Code for checking correctness of computations
classes_df.deg_ml + classes_df.deg_web == classes_df.deg
# Code for showing that DataFrames.jl checks consistency of stored objects
df = DataFrame(a=1, b=11)
push!(df.a, 2)
df
# Codes for section 8.3
# Code for computing groupwise means of columns
using Statistics
for type in [0, 1], col in ["deg_ml", "deg_web"]
println((type, col, mean(classes_df[classes_df.ml_target .== type, col])))
end
gdf = groupby(classes_df, :ml_target)
combine(gdf,
:deg_ml => mean => :mean_deg_ml,
:deg_web => mean => :mean_deg_web)
using DataFramesMeta
@combine(gdf,
:mean_deg_ml = mean(:deg_ml),
:mean_deg_web = mean(:deg_web))
# Code for simple plotting of relationship between developer degree and type
using Plots
scatter(classes_df.deg_ml, classes_df.deg_web;
color=[x == 1 ? "black" : "gray" for x in classes_df.ml_target],
xlabel="degree ml", ylabel="degree web", labels=false)
# Code for aggregation of degree data
agg_df = combine(groupby(classes_df, [:deg_ml, :deg_web]),
:ml_target => (x -> 1 - mean(x)) => :web_mean)
# Code for comparison how Julia parses expressions
:ml_target => (x -> 1 - mean(x)) => :web_mean
:ml_target => x -> 1 - mean(x) => :web_mean
# Code for aggregation using DataFramesMeta.jl
@combine(groupby(classes_df, [:deg_ml, :deg_web]),
:web_mean = 1 - mean(:ml_target))
# Code for getting summary information about the aggregated data frame
describe(agg_df)
# Code for log1p function
log1p(0)
# Code for listing 8.6
function gen_ticks(maxv)
max2 = round(Int, log2(maxv))
tick = [0; 2 .^ (0:max2)]
return (log1p.(tick), tick)
end
log1pjitter(x) = log1p(x) - 0.05 + rand() / 10
using Random
Random.seed!(1234);
scatter(log1pjitter.(agg_df.deg_ml),
log1pjitter.(agg_df.deg_web);
zcolor=agg_df.web_mean,
xlabel="degree ml", ylabel="degree web",
markersize=2, markerstrokewidth=0, markeralpha=0.8,
legend=:topleft, labels = "fraction web",
xticks=gen_ticks(maximum(classes_df.deg_ml)),
yticks=gen_ticks(maximum(classes_df.deg_web)))
# Code for fitting logistic regression model
using GLM
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)), classes_df, Binomial(), LogitLink())
# Code for inspecting @formula result
@formula(ml_target~log1p(deg_ml)+log1p(deg_web))
# Code for inserting columns to a data frame
df = DataFrame(x=1:3)
insertcols!(df, :y => 4:6)
insertcols!(df, :y => 4:6)
insertcols!(df, :z => 1)
insertcols!(df, 1, :a => 0)
insertcols!(df, :x, :pre_x => 2)
insertcols!(df, :x, :post_x => 3, after=true)