update up to chapter 9
This commit is contained in:
parent
e1d5277f8c
commit
ab6b8f18f3
170
ch08.jl
170
ch08.jl
@ -1,8 +1,8 @@
|
|||||||
# Bogumił Kamiński, 2022
|
# Bogumił Kamiński, 2022
|
||||||
|
|
||||||
# Codes for chapter 6
|
# Codes for chapter 8
|
||||||
|
|
||||||
# Code for section 6.1
|
# Code for section 8.1
|
||||||
|
|
||||||
if isfile("puzzles.csv.bz2")
|
if isfile("puzzles.csv.bz2")
|
||||||
@info "file already present"
|
@info "file already present"
|
||||||
@ -25,22 +25,27 @@ end
|
|||||||
|
|
||||||
readlines("puzzles.csv")
|
readlines("puzzles.csv")
|
||||||
|
|
||||||
# Code for section 6.2
|
# Code for section 8.2
|
||||||
|
|
||||||
using CSV
|
using CSV
|
||||||
using DataFrames
|
using DataFrames
|
||||||
puzzles = CSV.read("puzzles.csv", DataFrame);
|
puzzles = CSV.read("puzzles.csv", DataFrame);
|
||||||
|
|
||||||
CSV.read(plain, DataFrame);
|
puzzles2 = CSV.read(plain, DataFrame;
|
||||||
|
header=["PuzzleId", "FEN", "Moves",
|
||||||
|
"Rating","RatingDeviation",
|
||||||
|
"Popularity", "NbPlays",
|
||||||
|
"Themes","GameUrl"]);
|
||||||
|
puzzles == puzzles2
|
||||||
|
|
||||||
compressed = nothing
|
compressed = nothing
|
||||||
plain = nothing
|
plain = nothing
|
||||||
|
|
||||||
# Code for listing 6.1
|
# Code for listing 8.1
|
||||||
|
|
||||||
puzzles
|
puzzles
|
||||||
|
|
||||||
# Code for listing 6.2
|
# Code for listing 8.2
|
||||||
|
|
||||||
describe(puzzles)
|
describe(puzzles)
|
||||||
|
|
||||||
@ -52,7 +57,13 @@ nrow(puzzles)
|
|||||||
|
|
||||||
names(puzzles)
|
names(puzzles)
|
||||||
|
|
||||||
# Code for section 6.3
|
CSV.write("puzzles2.csv", puzzles)
|
||||||
|
|
||||||
|
read("puzzles2.csv")
|
||||||
|
|
||||||
|
read("puzzles2.csv") == read("puzzles.csv")
|
||||||
|
|
||||||
|
# Code for section 8.3
|
||||||
|
|
||||||
puzzles.Rating
|
puzzles.Rating
|
||||||
|
|
||||||
@ -101,148 +112,3 @@ plot(histogram(puzzles.Rating, label="Rating"),
|
|||||||
plot([histogram(puzzles[!, col]; label=col) for
|
plot([histogram(puzzles[!, col]; label=col) for
|
||||||
col in ["Rating", "RatingDeviation",
|
col in ["Rating", "RatingDeviation",
|
||||||
"Popularity", "NbPlays"]]...)
|
"Popularity", "NbPlays"]]...)
|
||||||
|
|
||||||
# Code for section 6.4
|
|
||||||
|
|
||||||
using Statistics
|
|
||||||
plays_lo = median(puzzles.NbPlays)
|
|
||||||
puzzles.NbPlays .> plays_lo
|
|
||||||
|
|
||||||
puzzles.NbPlays > plays_lo
|
|
||||||
|
|
||||||
rating_lo = 1500
|
|
||||||
rating_hi = quantile(puzzles.Rating, 0.99)
|
|
||||||
rating_lo .< puzzles.Rating .< rating_hi
|
|
||||||
|
|
||||||
row_selector = (puzzles.NbPlays .> plays_lo) .&&
|
|
||||||
(rating_lo .< puzzles.Rating .< rating_hi)
|
|
||||||
|
|
||||||
sum(row_selector)
|
|
||||||
count(row_selector)
|
|
||||||
|
|
||||||
# Code for listing 6.3
|
|
||||||
|
|
||||||
good = puzzles[row_selector, ["Rating", "Popularity"]]
|
|
||||||
|
|
||||||
# Code for plotting histograms
|
|
||||||
|
|
||||||
plot(histogram(good.Rating; label="Rating"),
|
|
||||||
histogram(good.Popularity; label="Popularity"))
|
|
||||||
|
|
||||||
# Code for column selectors
|
|
||||||
|
|
||||||
puzzles[1, "Rating"]
|
|
||||||
|
|
||||||
puzzles[:, "Rating"]
|
|
||||||
|
|
||||||
row1 = puzzles[1, ["Rating", "Popularity"]]
|
|
||||||
|
|
||||||
row1["Rating"]
|
|
||||||
row1[:Rating]
|
|
||||||
row1[1]
|
|
||||||
row1.Rating
|
|
||||||
row1."Rating"
|
|
||||||
|
|
||||||
good = puzzles[row_selector, ["Rating", "Popularity"]]
|
|
||||||
|
|
||||||
good[1, "Rating"]
|
|
||||||
good[1, :]
|
|
||||||
good[:, "Rating"]
|
|
||||||
good[:, :]
|
|
||||||
|
|
||||||
names(puzzles, ["Rating", "Popularity"])
|
|
||||||
names(puzzles, [:Rating, :Popularity])
|
|
||||||
names(puzzles, [4, 6])
|
|
||||||
names(puzzles, [false, false, false, true, false, true, false, false, false])
|
|
||||||
names(puzzles, r"Rating")
|
|
||||||
names(puzzles, Not([4, 6]))
|
|
||||||
names(puzzles, Not(r"Rating"))
|
|
||||||
names(puzzles, Between("Rating", "Popularity"))
|
|
||||||
names(puzzles, :)
|
|
||||||
names(puzzles, All())
|
|
||||||
names(puzzles, Cols(r"Rating", "NbPlays"))
|
|
||||||
names(puzzles, Cols(startswith("P")))
|
|
||||||
|
|
||||||
names(puzzles, startswith("P"))
|
|
||||||
|
|
||||||
names(puzzles, Real)
|
|
||||||
|
|
||||||
names(puzzles, AbstractString)
|
|
||||||
|
|
||||||
puzzles[:, names(puzzles, Real)]
|
|
||||||
|
|
||||||
# Code for row subsetting
|
|
||||||
|
|
||||||
df1 = puzzles[:, ["Rating", "Popularity"]];
|
|
||||||
df2 = puzzles[!, ["Rating", "Popularity"]];
|
|
||||||
|
|
||||||
df1 == df2
|
|
||||||
df1 == puzzles
|
|
||||||
df2 == puzzles
|
|
||||||
|
|
||||||
df1.Rating === puzzles.Rating
|
|
||||||
df1.Popularity === puzzles.Popularity
|
|
||||||
df2.Rating === puzzles.Rating
|
|
||||||
df2.Popularity === puzzles.Popularity
|
|
||||||
|
|
||||||
@benchmark $puzzles[:, ["Rating", "Popularity"]]
|
|
||||||
@benchmark $puzzles[!, ["Rating", "Popularity"]]
|
|
||||||
|
|
||||||
puzzles[1, 1]
|
|
||||||
puzzles[[1], 1]
|
|
||||||
puzzles[1, [1]]
|
|
||||||
puzzles[[1], [1]]
|
|
||||||
|
|
||||||
# Code for making views
|
|
||||||
|
|
||||||
@view puzzles[1, 1]
|
|
||||||
|
|
||||||
@view puzzles[[1], 1]
|
|
||||||
|
|
||||||
@view puzzles[1, [1]]
|
|
||||||
|
|
||||||
@view puzzles[[1], [1]]
|
|
||||||
|
|
||||||
@btime $puzzles[$row_selector, ["Rating", "Popularity"]];
|
|
||||||
@btime @view $puzzles[$row_selector, ["Rating", "Popularity"]];
|
|
||||||
|
|
||||||
parentindices(@view puzzles[row_selector, ["Rating", "Popularity"]])
|
|
||||||
|
|
||||||
# Code for section 6.5
|
|
||||||
|
|
||||||
describe(good)
|
|
||||||
|
|
||||||
rating_mapping = Dict{Int, Vector{Int}}()
|
|
||||||
for (i, rating) in enumerate(good.Rating)
|
|
||||||
if haskey(rating_mapping, rating)
|
|
||||||
push!(rating_mapping[rating], i)
|
|
||||||
else
|
|
||||||
rating_mapping[rating] = [i]
|
|
||||||
end
|
|
||||||
end
|
|
||||||
rating_mapping
|
|
||||||
|
|
||||||
good[rating_mapping[2108], :]
|
|
||||||
|
|
||||||
unique(good[rating_mapping[2108], :].Rating)
|
|
||||||
|
|
||||||
using Statistics
|
|
||||||
mean(good[rating_mapping[2108], "Popularity"])
|
|
||||||
|
|
||||||
ratings = unique(good.Rating)
|
|
||||||
|
|
||||||
mean_popularities = map(ratings) do rating
|
|
||||||
indices = rating_mapping[rating]
|
|
||||||
popularities = good[indices, "Popularity"]
|
|
||||||
return mean(popularities)
|
|
||||||
end
|
|
||||||
|
|
||||||
scatter(ratings, mean_popularities;
|
|
||||||
xlabel="rating", ylabel="mean popularity", legend=false)
|
|
||||||
|
|
||||||
import Loess
|
|
||||||
model = Loess.loess(ratings, mean_popularities);
|
|
||||||
ratings_predict = float.(sort(ratings))
|
|
||||||
popularity_predict = Loess.predict(model, ratings_predict)
|
|
||||||
|
|
||||||
plot!(ratings_predict, popularity_predict; width=5, color="black")
|
|
||||||
|
326
ch09.jl
326
ch09.jl
@ -1,279 +1,153 @@
|
|||||||
# Bogumił Kamiński, 2022
|
# Bogumił Kamiński, 2022
|
||||||
|
|
||||||
# Codes for chapter 7
|
# Codes for chapter 9
|
||||||
|
|
||||||
# Code for section 7.1
|
# Code for section 9.1
|
||||||
|
|
||||||
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
||||||
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
||||||
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
||||||
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
||||||
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
||||||
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
||||||
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
||||||
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
||||||
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
||||||
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
||||||
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
|
|
||||||
|
|
||||||
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
|
|
||||||
set2=(x=aq[:, 3], y=aq[:, 4]),
|
|
||||||
set3=(x=aq[:, 5], y=aq[:, 6]),
|
|
||||||
set4=(x=aq[:, 7], y=aq[:, 8]));
|
|
||||||
|
|
||||||
using DataFrames
|
using DataFrames
|
||||||
|
using CSV
|
||||||
|
using Plots
|
||||||
|
puzzles = CSV.read("puzzles.csv", DataFrame);
|
||||||
|
|
||||||
# Code for listing 7.1
|
using Statistics
|
||||||
|
plays_lo = median(puzzles.NbPlays)
|
||||||
|
puzzles.NbPlays .> plays_lo
|
||||||
|
|
||||||
aq1 = ataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
puzzles.NbPlays > plays_lo
|
||||||
DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4])
|
|
||||||
|
|
||||||
# Code for creating DataFrame with automatic column names
|
rating_lo = 1500
|
||||||
|
rating_hi = quantile(puzzles.Rating, 0.99)
|
||||||
|
rating_lo .< puzzles.Rating .< rating_hi
|
||||||
|
|
||||||
DataFrame(aq, :auto)
|
row_selector = (puzzles.NbPlays .> plays_lo) .&&
|
||||||
|
(rating_lo .< puzzles.Rating .< rating_hi)
|
||||||
|
|
||||||
# Codes for creating DataFrame from vector of vectors
|
sum(row_selector)
|
||||||
|
count(row_selector)
|
||||||
|
|
||||||
aq_vec = collect(eachcol(aq))
|
# Code for listing 9.1
|
||||||
DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
|
||||||
DataFrame(aq_vec, :auto)
|
|
||||||
|
|
||||||
# Codes for section 7.1.2
|
good = puzzles[row_selector, ["Rating", "Popularity"]]
|
||||||
|
|
||||||
data.set1.x
|
# Code for plotting histograms
|
||||||
|
|
||||||
DataFrame(x1=data.set1.x, y1=data.set1.y,
|
plot(histogram(good.Rating; label="Rating"),
|
||||||
x2=data.set2.x, y2=data.set2.y,
|
histogram(good.Popularity; label="Popularity"))
|
||||||
x3=data.set3.x, y3=data.set3.y,
|
|
||||||
x4=data.set4.x, y4=data.set4.y)
|
|
||||||
|
|
||||||
DataFrame(:x1 => data.set1.x, :y1 => data.set1.y,
|
# Code for column selectors
|
||||||
:x2 => data.set2.x, :y2 => data.set2.y,
|
|
||||||
:x3 => data.set3.x, :y3 => data.set3.y,
|
|
||||||
:x4 => data.set4.x, :y4 => data.set4.y)
|
|
||||||
|
|
||||||
DataFrame([:x1 => data.set1.x, :y1 => data.set1.y,
|
puzzles[1, "Rating"]
|
||||||
:x2 => data.set2.x, :y2 => data.set2.y,
|
|
||||||
:x3 => data.set3.x, :y3 => data.set3.y,
|
|
||||||
:x4 => data.set4.x, :y4 => data.set4.y]);
|
|
||||||
|
|
||||||
[(i, v) for i in 1:4 for v in [:x, :y]]
|
puzzles[:, "Rating"]
|
||||||
|
|
||||||
[string(v, i) for i in 1:4 for v in [:x, :y]]
|
row1 = puzzles[1, ["Rating", "Popularity"]]
|
||||||
|
|
||||||
[string(v, i) => getproperty(data[i], v)
|
row1["Rating"]
|
||||||
for i in 1:4 for v in [:x, :y]]
|
row1[:Rating]
|
||||||
|
row1[1]
|
||||||
|
row1.Rating
|
||||||
|
row1."Rating"
|
||||||
|
|
||||||
DataFrame([string(v, i) => getproperty(data[i], v)
|
good = puzzles[row_selector, ["Rating", "Popularity"]]
|
||||||
for i in 1:4 for v in [:x, :y]]);
|
|
||||||
|
|
||||||
data_dict = Dict([string(v, i) => getproperty(data[i], v)
|
good[1, "Rating"]
|
||||||
for i in 1:4 for v in [:x, :y]])
|
good[1, :]
|
||||||
collect(data_dict)
|
good[:, "Rating"]
|
||||||
|
good[:, :]
|
||||||
|
|
||||||
DataFrame(data_dict)
|
names(puzzles, ["Rating", "Popularity"])
|
||||||
|
names(puzzles, [:Rating, :Popularity])
|
||||||
|
names(puzzles, [4, 6])
|
||||||
|
names(puzzles, [false, false, false, true, false, true, false, false, false])
|
||||||
|
names(puzzles, r"Rating")
|
||||||
|
names(puzzles, Not([4, 6]))
|
||||||
|
names(puzzles, Not(r"Rating"))
|
||||||
|
names(puzzles, Between("Rating", "Popularity"))
|
||||||
|
names(puzzles, :)
|
||||||
|
names(puzzles, All())
|
||||||
|
names(puzzles, Cols(r"Rating", "NbPlays"))
|
||||||
|
names(puzzles, Cols(startswith("P")))
|
||||||
|
|
||||||
df1 = DataFrame(x1=data.set1.x)
|
names(puzzles, startswith("P"))
|
||||||
df1.x1 === data.set1.x
|
|
||||||
|
|
||||||
df2 = DataFrame(x1=data.set1.x; copycols=false)
|
names(puzzles, Real)
|
||||||
df2.x1 === data.set1.x
|
|
||||||
|
|
||||||
df = DataFrame(x=1:3, y=1)
|
names(puzzles, AbstractString)
|
||||||
df.x
|
|
||||||
|
|
||||||
DataFrame(x=[1], y=[1, 2, 3])
|
puzzles[:, names(puzzles, Real)]
|
||||||
|
|
||||||
# Codes for section 7.1.3
|
# Code for row subsetting
|
||||||
|
|
||||||
data.set1
|
df1 = puzzles[:, ["Rating", "Popularity"]];
|
||||||
DataFrame(data.set1)
|
df2 = puzzles[!, ["Rating", "Popularity"]];
|
||||||
|
|
||||||
DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)])
|
df1 == df2
|
||||||
|
df1 == puzzles
|
||||||
|
df2 == puzzles
|
||||||
|
|
||||||
data
|
df1.Rating === puzzles.Rating
|
||||||
|
df1.Popularity === puzzles.Popularity
|
||||||
|
df2.Rating === puzzles.Rating
|
||||||
|
df2.Popularity === puzzles.Popularity
|
||||||
|
|
||||||
# Code for listing 7.2
|
@benchmark $puzzles[:, ["Rating", "Popularity"]]
|
||||||
|
@benchmark $puzzles[!, ["Rating", "Popularity"]]
|
||||||
|
|
||||||
aq2 = DataFrame(data)
|
puzzles[1, 1]
|
||||||
|
puzzles[[1], 1]
|
||||||
|
puzzles[1, [1]]
|
||||||
|
puzzles[[1], [1]]
|
||||||
|
|
||||||
# Codes for listing 7.3
|
# Code for making views
|
||||||
|
|
||||||
data_dfs = map(DataFrame, data)
|
@view puzzles[1, 1]
|
||||||
|
|
||||||
# Codes for vertical concatenation examples
|
@view puzzles[[1], 1]
|
||||||
|
|
||||||
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4)
|
@view puzzles[1, [1]]
|
||||||
|
|
||||||
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
@view puzzles[[1], [1]]
|
||||||
source="source_id")
|
|
||||||
|
|
||||||
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
@btime $puzzles[$row_selector, ["Rating", "Popularity"]];
|
||||||
source="source_id"=>string.("set", 1:4))
|
@btime @view $puzzles[$row_selector, ["Rating", "Popularity"]];
|
||||||
|
|
||||||
reduce(vcat, collect(data_dfs);
|
parentindices(@view puzzles[row_selector, ["Rating", "Popularity"]])
|
||||||
source="source_id"=>string.("set", 1:4))
|
|
||||||
|
|
||||||
# Code for listing 7.4
|
# Code for section 9.2
|
||||||
|
|
||||||
df1 = DataFrame(a=1:3, b=11:13)
|
describe(good)
|
||||||
df2 = DataFrame(a=4:6, c=24:26)
|
|
||||||
vcat(df1, df2)
|
|
||||||
vcat(df1, df2; cols=:union)
|
|
||||||
|
|
||||||
# Code for listing 7.5
|
rating_mapping = Dict{Int, Vector{Int}}()
|
||||||
|
for (i, rating) in enumerate(good.Rating)
|
||||||
df_agg = DataFrame()
|
if haskey(rating_mapping, rating)
|
||||||
append!(df_agg, data_dfs.set1)
|
push!(rating_mapping[rating], i)
|
||||||
append!(df_agg, data_dfs.set2)
|
else
|
||||||
|
rating_mapping[rating] = [i]
|
||||||
# Code for appending tables to a data frame
|
|
||||||
|
|
||||||
df_agg = DataFrame()
|
|
||||||
append!(df_agg, data.set1)
|
|
||||||
append!(df_agg, data.set2)
|
|
||||||
|
|
||||||
# Code for promote keyword argument
|
|
||||||
|
|
||||||
df1 = DataFrame(a=1:3, b=11:13)
|
|
||||||
df2 = DataFrame(a=4:6, b=[14, missing, 16])
|
|
||||||
append!(df1, df2)
|
|
||||||
append!(df1, df2; promote=true)
|
|
||||||
|
|
||||||
# Code for section 7.2.3
|
|
||||||
|
|
||||||
df = DataFrame()
|
|
||||||
push!(df, (a=1, b=2))
|
|
||||||
push!(df, (a=3, b=4))
|
|
||||||
|
|
||||||
df = DataFrame(a=Int[], b=Int[])
|
|
||||||
push!(df, [1, 2])
|
|
||||||
push!(df, [3, 4])
|
|
||||||
|
|
||||||
function sim_step(current)
|
|
||||||
dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1)))
|
|
||||||
return (x=current.x + dx, y=current.y + dy)
|
|
||||||
end
|
|
||||||
|
|
||||||
using BenchmarkTools
|
|
||||||
@btime rand(((1,0), (-1,0), (0,1), (0,-1)));
|
|
||||||
|
|
||||||
dx, dy = (10, 20)
|
|
||||||
dx
|
|
||||||
dy
|
|
||||||
|
|
||||||
using FreqTables
|
|
||||||
using Random
|
|
||||||
Random.seed!(1234);
|
|
||||||
proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7])
|
|
||||||
|
|
||||||
using Random
|
|
||||||
Random.seed!(6);
|
|
||||||
walk = DataFrame(x=0, y=0)
|
|
||||||
for _ in 1:10
|
|
||||||
current = walk[end, :]
|
|
||||||
push!(walk, sim_step(current))
|
|
||||||
end
|
|
||||||
walk
|
|
||||||
|
|
||||||
plot(walk.x, walk.y;
|
|
||||||
legend=false,
|
|
||||||
series_annotations=1:11,
|
|
||||||
xticks=range(extrema(walk.x)...),
|
|
||||||
yticks=range(extrema(walk.y)...))
|
|
||||||
|
|
||||||
extrema(walk.y)
|
|
||||||
|
|
||||||
range(1, 5)
|
|
||||||
|
|
||||||
(3/4)^9
|
|
||||||
|
|
||||||
# Code for listing 7.6
|
|
||||||
|
|
||||||
function walk_unique() #A
|
|
||||||
walk = DataFrame(x=0, y=0)
|
|
||||||
for _ in 1:10
|
|
||||||
current = walk[end, :]
|
|
||||||
push!(walk, sim_step(current))
|
|
||||||
end
|
end
|
||||||
return nrow(unique(walk)) == nrow(walk) #B
|
|
||||||
end
|
end
|
||||||
Random.seed!(2);
|
rating_mapping
|
||||||
proptable([walk_unique() for _ in 1:10^5])
|
|
||||||
|
|
||||||
# Code for a note on conversion
|
good[rating_mapping[2108], :]
|
||||||
|
|
||||||
x = [1.5]
|
unique(good[rating_mapping[2108], :].Rating)
|
||||||
x[1] = 1
|
|
||||||
x
|
|
||||||
|
|
||||||
# Code from section 7.3.1
|
using Statistics
|
||||||
|
mean(good[rating_mapping[2108], "Popularity"])
|
||||||
|
|
||||||
Matrix(walk)
|
ratings = unique(good.Rating)
|
||||||
Matrix{Any}(walk)
|
|
||||||
Matrix{String}(walk)
|
|
||||||
|
|
||||||
plot(walk)
|
mean_popularities = map(ratings) do rating
|
||||||
|
indices = rating_mapping[rating]
|
||||||
plot(Matrix(walk); labels=["x" "y"] , legend=:topleft)
|
popularities = good[indices, "Popularity"]
|
||||||
|
return mean(popularities)
|
||||||
# Code from section 7.3.2
|
|
||||||
|
|
||||||
Tables.columntable(walk)
|
|
||||||
|
|
||||||
using BenchmarkTools
|
|
||||||
function mysum(table)
|
|
||||||
s = 0 #A
|
|
||||||
for v in table.x #B
|
|
||||||
s += v
|
|
||||||
end
|
|
||||||
return s
|
|
||||||
end
|
|
||||||
df = DataFrame(x=1:1_000_000);
|
|
||||||
@btime mysum($df)
|
|
||||||
|
|
||||||
tab = Tables.columntable(df);
|
|
||||||
@btime mysum($tab)
|
|
||||||
|
|
||||||
@code_warntype mysum(df)
|
|
||||||
|
|
||||||
@code_warntype mysum(tab)
|
|
||||||
|
|
||||||
typeof(tab)
|
|
||||||
|
|
||||||
function barrier_mysum2(x)
|
|
||||||
s = 0
|
|
||||||
for v in x
|
|
||||||
s += v
|
|
||||||
end
|
|
||||||
return s
|
|
||||||
end
|
|
||||||
mysum2(table) = barrier_mysum2(table.x)
|
|
||||||
@btime mysum2($df)
|
|
||||||
|
|
||||||
df = DataFrame(a=[1, 1, 2], b=[1, 1, 2])
|
|
||||||
unique(df)
|
|
||||||
|
|
||||||
tab = Tables.columntable(df)
|
|
||||||
unique(tab)
|
|
||||||
|
|
||||||
# Code from section 7.3.3
|
|
||||||
|
|
||||||
Tables.rowtable(walk)
|
|
||||||
|
|
||||||
nti = Tables.namedtupleiterator(walk)
|
|
||||||
for v in nti
|
|
||||||
println(v)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
er = eachrow(walk)
|
scatter(ratings, mean_popularities;
|
||||||
er[1]
|
xlabel="rating", ylabel="mean popularity", legend=false)
|
||||||
er[end]
|
|
||||||
ec = eachcol(walk)
|
|
||||||
ec[1]
|
|
||||||
ec[end]
|
|
||||||
|
|
||||||
identity.(eachcol(walk))
|
import Loess
|
||||||
|
model = Loess.loess(ratings, mean_popularities);
|
||||||
|
ratings_predict = float.(sort(ratings))
|
||||||
|
popularity_predict = Loess.predict(model, ratings_predict)
|
||||||
|
|
||||||
df = DataFrame(x=1:2, b=["a", "b"])
|
plot!(ratings_predict, popularity_predict; width=5, color="black")
|
||||||
identity.(eachcol(df))
|
|
||||||
|
475
ch10.jl
475
ch10.jl
@ -1,284 +1,279 @@
|
|||||||
# Bogumił Kamiński, 2022
|
# Bogumił Kamiński, 2022
|
||||||
|
|
||||||
# Codes for chapter 8
|
# Codes for chapter 7
|
||||||
|
|
||||||
# Codes for section 8.1
|
# Code for section 7.1
|
||||||
|
|
||||||
# Code for listing 8.1
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
||||||
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
||||||
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
||||||
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
||||||
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
||||||
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
||||||
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
||||||
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
||||||
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
||||||
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
||||||
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
|
||||||
|
|
||||||
import Downloads
|
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
|
||||||
using SHA
|
set2=(x=aq[:, 3], y=aq[:, 4]),
|
||||||
git_zip = "git_web_ml.zip"
|
set3=(x=aq[:, 5], y=aq[:, 6]),
|
||||||
if !isfile(git_zip)
|
set4=(x=aq[:, 7], y=aq[:, 8]));
|
||||||
Downloads.download("https://snap.stanford.edu/data/" *
|
|
||||||
"git_web_ml.zip",
|
|
||||||
git_zip)
|
|
||||||
end
|
|
||||||
isfile(git_zip)
|
|
||||||
open(sha256, git_zip) == [0x56, 0xc0, 0xc1, 0xc2,
|
|
||||||
0xc4, 0x60, 0xdc, 0x4c,
|
|
||||||
0x7b, 0xf8, 0x93, 0x57,
|
|
||||||
0xb1, 0xfe, 0xc0, 0x20,
|
|
||||||
0xf4, 0x5e, 0x2e, 0xce,
|
|
||||||
0xba, 0xb8, 0x1d, 0x13,
|
|
||||||
0x1d, 0x07, 0x3b, 0x10,
|
|
||||||
0xe2, 0x8e, 0xc0, 0x31]
|
|
||||||
|
|
||||||
# Code for opeining a zip archive
|
|
||||||
|
|
||||||
import ZipFile
|
|
||||||
git_archive = ZipFile.Reader(git_zip)
|
|
||||||
|
|
||||||
# Code for listing 8.2
|
|
||||||
|
|
||||||
function ingest_to_df(archive::ZipFile.Reader, filename::AbstractString)
|
|
||||||
idx = only(findall(x -> x.name == filename, archive.files))
|
|
||||||
return CSV.read(read(archive.files[idx]), DataFrame)
|
|
||||||
end
|
|
||||||
|
|
||||||
# Code for working with zip archive
|
|
||||||
|
|
||||||
git_archive.files
|
|
||||||
|
|
||||||
git_archive.files[2].name
|
|
||||||
|
|
||||||
findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files)
|
|
||||||
findall(x -> x.name == "", git_archive.files)
|
|
||||||
|
|
||||||
only(findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files))
|
|
||||||
only(findall(x -> x.name == "", git_archive.files))
|
|
||||||
|
|
||||||
# Code for listing 8.3
|
|
||||||
|
|
||||||
using CSV
|
|
||||||
using DataFrames
|
using DataFrames
|
||||||
edges_df = ingest_to_df(git_archive, "git_web_ml/musae_git_edges.csv");
|
|
||||||
classes_df = ingest_to_df(git_archive, "git_web_ml/musae_git_target.csv");
|
|
||||||
close(git_archive)
|
|
||||||
summary(edges_df)
|
|
||||||
describe(edges_df, :min, :max, :mean, :nmissing, :eltype)
|
|
||||||
summary(classes_df)
|
|
||||||
describe(classes_df, :min, :max, :mean, :nmissing, :eltype)
|
|
||||||
|
|
||||||
# Code for updating data frame columns using broadcasting
|
# Code for listing 7.1
|
||||||
|
|
||||||
edges_df .+= 1
|
aq1 = ataFrame(aq, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
||||||
classes_df.id .+= 1
|
DataFrame(aq, [:x1, :y1, :x2, :y2, :x3, :y3, :x4, :y4])
|
||||||
|
|
||||||
# Code for examples of data frame broadcasting
|
# Code for creating DataFrame with automatic column names
|
||||||
|
|
||||||
df = DataFrame(a=1:3, b=[4, missing, 5])
|
DataFrame(aq, :auto)
|
||||||
df .^ 2
|
|
||||||
coalesce.(df, 0)
|
|
||||||
df .+ [10, 11, 12]
|
|
||||||
|
|
||||||
# Code for checking the order of :id column in a data frame
|
# Codes for creating DataFrame from vector of vectors
|
||||||
|
|
||||||
classes_df.id == axes(classes_df, 1)
|
aq_vec = collect(eachcol(aq))
|
||||||
|
DataFrame(aq_vec, ["x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"])
|
||||||
|
DataFrame(aq_vec, :auto)
|
||||||
|
|
||||||
# Code for the difference between ! and : in broadcasting assignment
|
# Codes for section 7.1.2
|
||||||
|
|
||||||
df = DataFrame(a=1:3, b=1:3)
|
data.set1.x
|
||||||
df[!, :a] .= "x"
|
|
||||||
df[:, :b] .= "x"
|
|
||||||
df
|
|
||||||
|
|
||||||
# Code for the difference between ! and : in assignment
|
DataFrame(x1=data.set1.x, y1=data.set1.y,
|
||||||
|
x2=data.set2.x, y2=data.set2.y,
|
||||||
|
x3=data.set3.x, y3=data.set3.y,
|
||||||
|
x4=data.set4.x, y4=data.set4.y)
|
||||||
|
|
||||||
df = DataFrame(a=1:3, b=1:3, c=1:3)
|
DataFrame(:x1 => data.set1.x, :y1 => data.set1.y,
|
||||||
df[!, :a] = ["x", "y", "z"]
|
:x2 => data.set2.x, :y2 => data.set2.y,
|
||||||
df[:, :b] = ["x", "y", "z"]
|
:x3 => data.set3.x, :y3 => data.set3.y,
|
||||||
df[:, :c] = [11, 12, 13]
|
:x4 => data.set4.x, :y4 => data.set4.y)
|
||||||
df
|
|
||||||
|
|
||||||
# Codes for section 8.2
|
DataFrame([:x1 => data.set1.x, :y1 => data.set1.y,
|
||||||
|
:x2 => data.set2.x, :y2 => data.set2.y,
|
||||||
|
:x3 => data.set3.x, :y3 => data.set3.y,
|
||||||
|
:x4 => data.set4.x, :y4 => data.set4.y]);
|
||||||
|
|
||||||
# Code from listing 8.4
|
[(i, v) for i in 1:4 for v in [:x, :y]]
|
||||||
|
|
||||||
using Graphs
|
[string(v, i) for i in 1:4 for v in [:x, :y]]
|
||||||
gh = SimpleGraph(nrow(classes_df))
|
|
||||||
for (from, to) in eachrow(edges_df)
|
|
||||||
add_edge!(gh, from, to)
|
|
||||||
end
|
|
||||||
gh
|
|
||||||
ne(gh)
|
|
||||||
nv(gh)
|
|
||||||
|
|
||||||
# Code for iterator destruction in iteration specification
|
[string(v, i) => getproperty(data[i], v)
|
||||||
|
for i in 1:4 for v in [:x, :y]]
|
||||||
|
|
||||||
mat = [1 2; 3 4; 5 6]
|
DataFrame([string(v, i) => getproperty(data[i], v)
|
||||||
for (x1, x2) in eachrow(mat)
|
for i in 1:4 for v in [:x, :y]]);
|
||||||
@show x1, x2
|
|
||||||
end
|
|
||||||
|
|
||||||
# Code for getting degrees of nodes in the graph
|
data_dict = Dict([string(v, i) => getproperty(data[i], v)
|
||||||
|
for i in 1:4 for v in [:x, :y]])
|
||||||
|
collect(data_dict)
|
||||||
|
|
||||||
degree(gh)
|
DataFrame(data_dict)
|
||||||
|
|
||||||
# Code for adding a column to a data frame
|
df1 = DataFrame(x1=data.set1.x)
|
||||||
|
df1.x1 === data.set1.x
|
||||||
|
|
||||||
classes_df.deg = degree(gh)
|
df2 = DataFrame(x1=data.set1.x; copycols=false)
|
||||||
|
df2.x1 === data.set1.x
|
||||||
|
|
||||||
# Code for the difference between ! and : when adding a column
|
df = DataFrame(x=1:3, y=1)
|
||||||
|
df.x
|
||||||
|
|
||||||
|
DataFrame(x=[1], y=[1, 2, 3])
|
||||||
|
|
||||||
|
# Codes for section 7.1.3
|
||||||
|
|
||||||
|
data.set1
|
||||||
|
DataFrame(data.set1)
|
||||||
|
|
||||||
|
DataFrame([(a=1, b=2), (a=3, b=4), (a=5, b=6)])
|
||||||
|
|
||||||
|
data
|
||||||
|
|
||||||
|
# Code for listing 7.2
|
||||||
|
|
||||||
|
aq2 = DataFrame(data)
|
||||||
|
|
||||||
|
# Codes for listing 7.3
|
||||||
|
|
||||||
|
data_dfs = map(DataFrame, data)
|
||||||
|
|
||||||
|
# Codes for vertical concatenation examples
|
||||||
|
|
||||||
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4)
|
||||||
|
|
||||||
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
||||||
|
source="source_id")
|
||||||
|
|
||||||
|
vcat(data_dfs.set1, data_dfs.set2, data_dfs.set3, data_dfs.set4;
|
||||||
|
source="source_id"=>string.("set", 1:4))
|
||||||
|
|
||||||
|
reduce(vcat, collect(data_dfs);
|
||||||
|
source="source_id"=>string.("set", 1:4))
|
||||||
|
|
||||||
|
# Code for listing 7.4
|
||||||
|
|
||||||
|
df1 = DataFrame(a=1:3, b=11:13)
|
||||||
|
df2 = DataFrame(a=4:6, c=24:26)
|
||||||
|
vcat(df1, df2)
|
||||||
|
vcat(df1, df2; cols=:union)
|
||||||
|
|
||||||
|
# Code for listing 7.5
|
||||||
|
|
||||||
|
df_agg = DataFrame()
|
||||||
|
append!(df_agg, data_dfs.set1)
|
||||||
|
append!(df_agg, data_dfs.set2)
|
||||||
|
|
||||||
|
# Code for appending tables to a data frame
|
||||||
|
|
||||||
|
df_agg = DataFrame()
|
||||||
|
append!(df_agg, data.set1)
|
||||||
|
append!(df_agg, data.set2)
|
||||||
|
|
||||||
|
# Code for promote keyword argument
|
||||||
|
|
||||||
|
df1 = DataFrame(a=1:3, b=11:13)
|
||||||
|
df2 = DataFrame(a=4:6, b=[14, missing, 16])
|
||||||
|
append!(df1, df2)
|
||||||
|
append!(df1, df2; promote=true)
|
||||||
|
|
||||||
|
# Code for section 7.2.3
|
||||||
|
|
||||||
df = DataFrame()
|
df = DataFrame()
|
||||||
x = [1, 2, 3]
|
push!(df, (a=1, b=2))
|
||||||
df[!, :x1] = x
|
push!(df, (a=3, b=4))
|
||||||
df[:, :x2] = x
|
|
||||||
df
|
|
||||||
df.x1 === x
|
|
||||||
df.x2 === x
|
|
||||||
df.x2 == x
|
|
||||||
|
|
||||||
# Code for creating a column using broadcasting
|
df = DataFrame(a=Int[], b=Int[])
|
||||||
|
push!(df, [1, 2])
|
||||||
|
push!(df, [3, 4])
|
||||||
|
|
||||||
df.x3 .= 1
|
function sim_step(current)
|
||||||
df
|
dx, dy = rand(((1,0), (-1,0), (0,1), (0,-1)))
|
||||||
|
return (x=current.x + dx, y=current.y + dy)
|
||||||
# Code for edge iterator of a graph
|
|
||||||
|
|
||||||
edges(gh)
|
|
||||||
|
|
||||||
e1 = first(edges(gh))
|
|
||||||
dump(e1)
|
|
||||||
e1.src
|
|
||||||
e1.dst
|
|
||||||
|
|
||||||
# Code for listing 8.5
|
|
||||||
|
|
||||||
function deg_class(gh, class)
|
|
||||||
deg_ml = zeros(Int, length(class))
|
|
||||||
deg_web = zeros(Int, length(class))
|
|
||||||
for edge in edges(gh)
|
|
||||||
a, b = edge.src, edge.dst
|
|
||||||
if class[b] == 1
|
|
||||||
deg_ml[a] += 1
|
|
||||||
else
|
|
||||||
deg_web[a] += 1
|
|
||||||
end
|
|
||||||
if class[a] == 1
|
|
||||||
deg_ml[b] += 1
|
|
||||||
else
|
|
||||||
deg_web[b] += 1
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return (deg_ml, deg_web)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
# Code for computing machine learning and web neighbors for gh graph
|
using BenchmarkTools
|
||||||
|
@btime rand(((1,0), (-1,0), (0,1), (0,-1)));
|
||||||
|
|
||||||
classes_df.deg_ml, classes_df.deg_web =
|
dx, dy = (10, 20)
|
||||||
deg_class(gh, classes_df.ml_target)
|
dx
|
||||||
|
dy
|
||||||
# Code for checking type stability of deg_class function
|
|
||||||
|
|
||||||
@time deg_class(gh, classes_df.ml_target);
|
|
||||||
@code_warntype deg_class(gh, classes_df.ml_target)
|
|
||||||
|
|
||||||
# Code for checking the classes_df summary statistics
|
|
||||||
|
|
||||||
describe(classes_df, :min, :max, :mean, :std)
|
|
||||||
|
|
||||||
# Code for average degree of node in the graph
|
|
||||||
|
|
||||||
2 * ne(gh) / nv(gh)
|
|
||||||
|
|
||||||
# Code for checking correctness of computations
|
|
||||||
|
|
||||||
classes_df.deg_ml + classes_df.deg_web == classes_df.deg
|
|
||||||
|
|
||||||
# Code for showing that DataFrames.jl checks consistency of stored objects
|
|
||||||
|
|
||||||
df = DataFrame(a=1, b=11)
|
|
||||||
push!(df.a, 2)
|
|
||||||
df
|
|
||||||
|
|
||||||
# Codes for section 8.3
|
|
||||||
|
|
||||||
# Code for computing groupwise means of columns
|
|
||||||
|
|
||||||
using Statistics
|
|
||||||
for type in [0, 1], col in ["deg_ml", "deg_web"]
|
|
||||||
println((type, col, mean(classes_df[classes_df.ml_target .== type, col])))
|
|
||||||
end
|
|
||||||
|
|
||||||
gdf = groupby(classes_df, :ml_target)
|
|
||||||
combine(gdf,
|
|
||||||
:deg_ml => mean => :mean_deg_ml,
|
|
||||||
:deg_web => mean => :mean_deg_web)
|
|
||||||
|
|
||||||
using DataFramesMeta
|
|
||||||
@combine(gdf,
|
|
||||||
:mean_deg_ml = mean(:deg_ml),
|
|
||||||
:mean_deg_web = mean(:deg_web))
|
|
||||||
|
|
||||||
# Code for simple plotting of relationship between developer degree and type
|
|
||||||
|
|
||||||
using Plots
|
|
||||||
scatter(classes_df.deg_ml, classes_df.deg_web;
|
|
||||||
color=[x == 1 ? "black" : "gray" for x in classes_df.ml_target],
|
|
||||||
xlabel="degree ml", ylabel="degree web", labels=false)
|
|
||||||
|
|
||||||
# Code for aggregation of degree data
|
|
||||||
|
|
||||||
agg_df = combine(groupby(classes_df, [:deg_ml, :deg_web]),
|
|
||||||
:ml_target => (x -> 1 - mean(x)) => :web_mean)
|
|
||||||
|
|
||||||
# Code for comparison how Julia parses expressions
|
|
||||||
|
|
||||||
:ml_target => (x -> 1 - mean(x)) => :web_mean
|
|
||||||
:ml_target => x -> 1 - mean(x) => :web_mean
|
|
||||||
|
|
||||||
# Code for aggregation using DataFramesMeta.jl
|
|
||||||
|
|
||||||
@combine(groupby(classes_df, [:deg_ml, :deg_web]),
|
|
||||||
:web_mean = 1 - mean(:ml_target))
|
|
||||||
|
|
||||||
# Code for getting summary information about the aggregated data frame
|
|
||||||
|
|
||||||
describe(agg_df)
|
|
||||||
|
|
||||||
# Code for log1p function
|
|
||||||
|
|
||||||
log1p(0)
|
|
||||||
|
|
||||||
# Code for listing 8.6
|
|
||||||
|
|
||||||
function gen_ticks(maxv)
|
|
||||||
max2 = round(Int, log2(maxv))
|
|
||||||
tick = [0; 2 .^ (0:max2)]
|
|
||||||
return (log1p.(tick), tick)
|
|
||||||
end
|
|
||||||
|
|
||||||
log1pjitter(x) = log1p(x) - 0.05 + rand() / 10
|
|
||||||
|
|
||||||
|
using FreqTables
|
||||||
using Random
|
using Random
|
||||||
Random.seed!(1234);
|
Random.seed!(1234);
|
||||||
scatter(log1pjitter.(agg_df.deg_ml),
|
proptable([rand(((1,0), (-1,0), (0,1), (0,-1))) for _ in 1:10^7])
|
||||||
log1pjitter.(agg_df.deg_web);
|
|
||||||
zcolor=agg_df.web_mean,
|
|
||||||
xlabel="degree ml", ylabel="degree web",
|
|
||||||
markersize=2, markerstrokewidth=0, markeralpha=0.8,
|
|
||||||
legend=:topleft, labels = "fraction web",
|
|
||||||
xticks=gen_ticks(maximum(classes_df.deg_ml)),
|
|
||||||
yticks=gen_ticks(maximum(classes_df.deg_web)))
|
|
||||||
|
|
||||||
# Code for fitting logistic regression model
|
using Random
|
||||||
|
Random.seed!(6);
|
||||||
|
walk = DataFrame(x=0, y=0)
|
||||||
|
for _ in 1:10
|
||||||
|
current = walk[end, :]
|
||||||
|
push!(walk, sim_step(current))
|
||||||
|
end
|
||||||
|
walk
|
||||||
|
|
||||||
using GLM
|
plot(walk.x, walk.y;
|
||||||
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)), classes_df, Binomial(), LogitLink())
|
legend=false,
|
||||||
|
series_annotations=1:11,
|
||||||
|
xticks=range(extrema(walk.x)...),
|
||||||
|
yticks=range(extrema(walk.y)...))
|
||||||
|
|
||||||
# Code for inspecting @formula result
|
extrema(walk.y)
|
||||||
|
|
||||||
@formula(ml_target~log1p(deg_ml)+log1p(deg_web))
|
range(1, 5)
|
||||||
|
|
||||||
# Code for inserting columns to a data frame
|
(3/4)^9
|
||||||
|
|
||||||
df = DataFrame(x=1:3)
|
# Code for listing 7.6
|
||||||
insertcols!(df, :y => 4:6)
|
|
||||||
insertcols!(df, :y => 4:6)
|
|
||||||
insertcols!(df, :z => 1)
|
|
||||||
|
|
||||||
insertcols!(df, 1, :a => 0)
|
function walk_unique() #A
|
||||||
insertcols!(df, :x, :pre_x => 2)
|
walk = DataFrame(x=0, y=0)
|
||||||
insertcols!(df, :x, :post_x => 3, after=true)
|
for _ in 1:10
|
||||||
|
current = walk[end, :]
|
||||||
|
push!(walk, sim_step(current))
|
||||||
|
end
|
||||||
|
return nrow(unique(walk)) == nrow(walk) #B
|
||||||
|
end
|
||||||
|
Random.seed!(2);
|
||||||
|
proptable([walk_unique() for _ in 1:10^5])
|
||||||
|
|
||||||
|
# Code for a note on conversion
|
||||||
|
|
||||||
|
x = [1.5]
|
||||||
|
x[1] = 1
|
||||||
|
x
|
||||||
|
|
||||||
|
# Code from section 7.3.1
|
||||||
|
|
||||||
|
Matrix(walk)
|
||||||
|
Matrix{Any}(walk)
|
||||||
|
Matrix{String}(walk)
|
||||||
|
|
||||||
|
plot(walk)
|
||||||
|
|
||||||
|
plot(Matrix(walk); labels=["x" "y"] , legend=:topleft)
|
||||||
|
|
||||||
|
# Code from section 7.3.2
|
||||||
|
|
||||||
|
Tables.columntable(walk)
|
||||||
|
|
||||||
|
using BenchmarkTools
|
||||||
|
function mysum(table)
|
||||||
|
s = 0 #A
|
||||||
|
for v in table.x #B
|
||||||
|
s += v
|
||||||
|
end
|
||||||
|
return s
|
||||||
|
end
|
||||||
|
df = DataFrame(x=1:1_000_000);
|
||||||
|
@btime mysum($df)
|
||||||
|
|
||||||
|
tab = Tables.columntable(df);
|
||||||
|
@btime mysum($tab)
|
||||||
|
|
||||||
|
@code_warntype mysum(df)
|
||||||
|
|
||||||
|
@code_warntype mysum(tab)
|
||||||
|
|
||||||
|
typeof(tab)
|
||||||
|
|
||||||
|
function barrier_mysum2(x)
|
||||||
|
s = 0
|
||||||
|
for v in x
|
||||||
|
s += v
|
||||||
|
end
|
||||||
|
return s
|
||||||
|
end
|
||||||
|
mysum2(table) = barrier_mysum2(table.x)
|
||||||
|
@btime mysum2($df)
|
||||||
|
|
||||||
|
df = DataFrame(a=[1, 1, 2], b=[1, 1, 2])
|
||||||
|
unique(df)
|
||||||
|
|
||||||
|
tab = Tables.columntable(df)
|
||||||
|
unique(tab)
|
||||||
|
|
||||||
|
# Code from section 7.3.3
|
||||||
|
|
||||||
|
Tables.rowtable(walk)
|
||||||
|
|
||||||
|
nti = Tables.namedtupleiterator(walk)
|
||||||
|
for v in nti
|
||||||
|
println(v)
|
||||||
|
end
|
||||||
|
|
||||||
|
er = eachrow(walk)
|
||||||
|
er[1]
|
||||||
|
er[end]
|
||||||
|
ec = eachcol(walk)
|
||||||
|
ec[1]
|
||||||
|
ec[end]
|
||||||
|
|
||||||
|
identity.(eachcol(walk))
|
||||||
|
|
||||||
|
df = DataFrame(x=1:2, b=["a", "b"])
|
||||||
|
identity.(eachcol(df))
|
||||||
|
284
ch12.jl
Normal file
284
ch12.jl
Normal file
@ -0,0 +1,284 @@
|
|||||||
|
# Bogumił Kamiński, 2022
|
||||||
|
|
||||||
|
# Codes for chapter 8
|
||||||
|
|
||||||
|
# Codes for section 8.1
|
||||||
|
|
||||||
|
# Code for listing 8.1
|
||||||
|
|
||||||
|
import Downloads
|
||||||
|
using SHA
|
||||||
|
git_zip = "git_web_ml.zip"
|
||||||
|
if !isfile(git_zip)
|
||||||
|
Downloads.download("https://snap.stanford.edu/data/" *
|
||||||
|
"git_web_ml.zip",
|
||||||
|
git_zip)
|
||||||
|
end
|
||||||
|
isfile(git_zip)
|
||||||
|
open(sha256, git_zip) == [0x56, 0xc0, 0xc1, 0xc2,
|
||||||
|
0xc4, 0x60, 0xdc, 0x4c,
|
||||||
|
0x7b, 0xf8, 0x93, 0x57,
|
||||||
|
0xb1, 0xfe, 0xc0, 0x20,
|
||||||
|
0xf4, 0x5e, 0x2e, 0xce,
|
||||||
|
0xba, 0xb8, 0x1d, 0x13,
|
||||||
|
0x1d, 0x07, 0x3b, 0x10,
|
||||||
|
0xe2, 0x8e, 0xc0, 0x31]
|
||||||
|
|
||||||
|
# Code for opeining a zip archive
|
||||||
|
|
||||||
|
import ZipFile
|
||||||
|
git_archive = ZipFile.Reader(git_zip)
|
||||||
|
|
||||||
|
# Code for listing 8.2
|
||||||
|
|
||||||
|
function ingest_to_df(archive::ZipFile.Reader, filename::AbstractString)
|
||||||
|
idx = only(findall(x -> x.name == filename, archive.files))
|
||||||
|
return CSV.read(read(archive.files[idx]), DataFrame)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Code for working with zip archive
|
||||||
|
|
||||||
|
git_archive.files
|
||||||
|
|
||||||
|
git_archive.files[2].name
|
||||||
|
|
||||||
|
findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files)
|
||||||
|
findall(x -> x.name == "", git_archive.files)
|
||||||
|
|
||||||
|
only(findall(x -> x.name == "git_web_ml/musae_git_edges.csv", git_archive.files))
|
||||||
|
only(findall(x -> x.name == "", git_archive.files))
|
||||||
|
|
||||||
|
# Code for listing 8.3
|
||||||
|
|
||||||
|
using CSV
|
||||||
|
using DataFrames
|
||||||
|
edges_df = ingest_to_df(git_archive, "git_web_ml/musae_git_edges.csv");
|
||||||
|
classes_df = ingest_to_df(git_archive, "git_web_ml/musae_git_target.csv");
|
||||||
|
close(git_archive)
|
||||||
|
summary(edges_df)
|
||||||
|
describe(edges_df, :min, :max, :mean, :nmissing, :eltype)
|
||||||
|
summary(classes_df)
|
||||||
|
describe(classes_df, :min, :max, :mean, :nmissing, :eltype)
|
||||||
|
|
||||||
|
# Code for updating data frame columns using broadcasting
|
||||||
|
|
||||||
|
edges_df .+= 1
|
||||||
|
classes_df.id .+= 1
|
||||||
|
|
||||||
|
# Code for examples of data frame broadcasting
|
||||||
|
|
||||||
|
df = DataFrame(a=1:3, b=[4, missing, 5])
|
||||||
|
df .^ 2
|
||||||
|
coalesce.(df, 0)
|
||||||
|
df .+ [10, 11, 12]
|
||||||
|
|
||||||
|
# Code for checking the order of :id column in a data frame
|
||||||
|
|
||||||
|
classes_df.id == axes(classes_df, 1)
|
||||||
|
|
||||||
|
# Code for the difference between ! and : in broadcasting assignment
|
||||||
|
|
||||||
|
df = DataFrame(a=1:3, b=1:3)
|
||||||
|
df[!, :a] .= "x"
|
||||||
|
df[:, :b] .= "x"
|
||||||
|
df
|
||||||
|
|
||||||
|
# Code for the difference between ! and : in assignment
|
||||||
|
|
||||||
|
df = DataFrame(a=1:3, b=1:3, c=1:3)
|
||||||
|
df[!, :a] = ["x", "y", "z"]
|
||||||
|
df[:, :b] = ["x", "y", "z"]
|
||||||
|
df[:, :c] = [11, 12, 13]
|
||||||
|
df
|
||||||
|
|
||||||
|
# Codes for section 8.2
|
||||||
|
|
||||||
|
# Code from listing 8.4
|
||||||
|
|
||||||
|
using Graphs
|
||||||
|
gh = SimpleGraph(nrow(classes_df))
|
||||||
|
for (from, to) in eachrow(edges_df)
|
||||||
|
add_edge!(gh, from, to)
|
||||||
|
end
|
||||||
|
gh
|
||||||
|
ne(gh)
|
||||||
|
nv(gh)
|
||||||
|
|
||||||
|
# Code for iterator destruction in iteration specification
|
||||||
|
|
||||||
|
mat = [1 2; 3 4; 5 6]
|
||||||
|
for (x1, x2) in eachrow(mat)
|
||||||
|
@show x1, x2
|
||||||
|
end
|
||||||
|
|
||||||
|
# Code for getting degrees of nodes in the graph
|
||||||
|
|
||||||
|
degree(gh)
|
||||||
|
|
||||||
|
# Code for adding a column to a data frame
|
||||||
|
|
||||||
|
classes_df.deg = degree(gh)
|
||||||
|
|
||||||
|
# Code for the difference between ! and : when adding a column
|
||||||
|
|
||||||
|
df = DataFrame()
|
||||||
|
x = [1, 2, 3]
|
||||||
|
df[!, :x1] = x
|
||||||
|
df[:, :x2] = x
|
||||||
|
df
|
||||||
|
df.x1 === x
|
||||||
|
df.x2 === x
|
||||||
|
df.x2 == x
|
||||||
|
|
||||||
|
# Code for creating a column using broadcasting
|
||||||
|
|
||||||
|
df.x3 .= 1
|
||||||
|
df
|
||||||
|
|
||||||
|
# Code for edge iterator of a graph
|
||||||
|
|
||||||
|
edges(gh)
|
||||||
|
|
||||||
|
e1 = first(edges(gh))
|
||||||
|
dump(e1)
|
||||||
|
e1.src
|
||||||
|
e1.dst
|
||||||
|
|
||||||
|
# Code for listing 8.5
|
||||||
|
|
||||||
|
function deg_class(gh, class)
|
||||||
|
deg_ml = zeros(Int, length(class))
|
||||||
|
deg_web = zeros(Int, length(class))
|
||||||
|
for edge in edges(gh)
|
||||||
|
a, b = edge.src, edge.dst
|
||||||
|
if class[b] == 1
|
||||||
|
deg_ml[a] += 1
|
||||||
|
else
|
||||||
|
deg_web[a] += 1
|
||||||
|
end
|
||||||
|
if class[a] == 1
|
||||||
|
deg_ml[b] += 1
|
||||||
|
else
|
||||||
|
deg_web[b] += 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return (deg_ml, deg_web)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Code for computing machine learning and web neighbors for gh graph
|
||||||
|
|
||||||
|
classes_df.deg_ml, classes_df.deg_web =
|
||||||
|
deg_class(gh, classes_df.ml_target)
|
||||||
|
|
||||||
|
# Code for checking type stability of deg_class function
|
||||||
|
|
||||||
|
@time deg_class(gh, classes_df.ml_target);
|
||||||
|
@code_warntype deg_class(gh, classes_df.ml_target)
|
||||||
|
|
||||||
|
# Code for checking the classes_df summary statistics
|
||||||
|
|
||||||
|
describe(classes_df, :min, :max, :mean, :std)
|
||||||
|
|
||||||
|
# Code for average degree of node in the graph
|
||||||
|
|
||||||
|
2 * ne(gh) / nv(gh)
|
||||||
|
|
||||||
|
# Code for checking correctness of computations
|
||||||
|
|
||||||
|
classes_df.deg_ml + classes_df.deg_web == classes_df.deg
|
||||||
|
|
||||||
|
# Code for showing that DataFrames.jl checks consistency of stored objects
|
||||||
|
|
||||||
|
df = DataFrame(a=1, b=11)
|
||||||
|
push!(df.a, 2)
|
||||||
|
df
|
||||||
|
|
||||||
|
# Codes for section 8.3
|
||||||
|
|
||||||
|
# Code for computing groupwise means of columns
|
||||||
|
|
||||||
|
using Statistics
|
||||||
|
for type in [0, 1], col in ["deg_ml", "deg_web"]
|
||||||
|
println((type, col, mean(classes_df[classes_df.ml_target .== type, col])))
|
||||||
|
end
|
||||||
|
|
||||||
|
gdf = groupby(classes_df, :ml_target)
|
||||||
|
combine(gdf,
|
||||||
|
:deg_ml => mean => :mean_deg_ml,
|
||||||
|
:deg_web => mean => :mean_deg_web)
|
||||||
|
|
||||||
|
using DataFramesMeta
|
||||||
|
@combine(gdf,
|
||||||
|
:mean_deg_ml = mean(:deg_ml),
|
||||||
|
:mean_deg_web = mean(:deg_web))
|
||||||
|
|
||||||
|
# Code for simple plotting of relationship between developer degree and type
|
||||||
|
|
||||||
|
using Plots
|
||||||
|
scatter(classes_df.deg_ml, classes_df.deg_web;
|
||||||
|
color=[x == 1 ? "black" : "gray" for x in classes_df.ml_target],
|
||||||
|
xlabel="degree ml", ylabel="degree web", labels=false)
|
||||||
|
|
||||||
|
# Code for aggregation of degree data
|
||||||
|
|
||||||
|
agg_df = combine(groupby(classes_df, [:deg_ml, :deg_web]),
|
||||||
|
:ml_target => (x -> 1 - mean(x)) => :web_mean)
|
||||||
|
|
||||||
|
# Code for comparison how Julia parses expressions
|
||||||
|
|
||||||
|
:ml_target => (x -> 1 - mean(x)) => :web_mean
|
||||||
|
:ml_target => x -> 1 - mean(x) => :web_mean
|
||||||
|
|
||||||
|
# Code for aggregation using DataFramesMeta.jl
|
||||||
|
|
||||||
|
@combine(groupby(classes_df, [:deg_ml, :deg_web]),
|
||||||
|
:web_mean = 1 - mean(:ml_target))
|
||||||
|
|
||||||
|
# Code for getting summary information about the aggregated data frame
|
||||||
|
|
||||||
|
describe(agg_df)
|
||||||
|
|
||||||
|
# Code for log1p function
|
||||||
|
|
||||||
|
log1p(0)
|
||||||
|
|
||||||
|
# Code for listing 8.6
|
||||||
|
|
||||||
|
function gen_ticks(maxv)
|
||||||
|
max2 = round(Int, log2(maxv))
|
||||||
|
tick = [0; 2 .^ (0:max2)]
|
||||||
|
return (log1p.(tick), tick)
|
||||||
|
end
|
||||||
|
|
||||||
|
log1pjitter(x) = log1p(x) - 0.05 + rand() / 10
|
||||||
|
|
||||||
|
using Random
|
||||||
|
Random.seed!(1234);
|
||||||
|
scatter(log1pjitter.(agg_df.deg_ml),
|
||||||
|
log1pjitter.(agg_df.deg_web);
|
||||||
|
zcolor=agg_df.web_mean,
|
||||||
|
xlabel="degree ml", ylabel="degree web",
|
||||||
|
markersize=2, markerstrokewidth=0, markeralpha=0.8,
|
||||||
|
legend=:topleft, labels = "fraction web",
|
||||||
|
xticks=gen_ticks(maximum(classes_df.deg_ml)),
|
||||||
|
yticks=gen_ticks(maximum(classes_df.deg_web)))
|
||||||
|
|
||||||
|
# Code for fitting logistic regression model
|
||||||
|
|
||||||
|
using GLM
|
||||||
|
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)), classes_df, Binomial(), LogitLink())
|
||||||
|
|
||||||
|
# Code for inspecting @formula result
|
||||||
|
|
||||||
|
@formula(ml_target~log1p(deg_ml)+log1p(deg_web))
|
||||||
|
|
||||||
|
# Code for inserting columns to a data frame
|
||||||
|
|
||||||
|
df = DataFrame(x=1:3)
|
||||||
|
insertcols!(df, :y => 4:6)
|
||||||
|
insertcols!(df, :y => 4:6)
|
||||||
|
insertcols!(df, :z => 1)
|
||||||
|
|
||||||
|
insertcols!(df, 1, :a => 0)
|
||||||
|
insertcols!(df, :x, :pre_x => 2)
|
||||||
|
insertcols!(df, :x, :post_x => 3, after=true)
|
Loading…
Reference in New Issue
Block a user