2021-12-29 16:08:09 +01:00
|
|
|
# Bogumił Kamiński, 2021
|
|
|
|
|
|
|
|
# Codes for appendix B
|
|
|
|
|
2022-01-17 11:20:58 +01:00
|
|
|
# the solutions for exercises from a given chapter assume that
|
|
|
|
# there are packages loaded, variables and functions defined in the user's
|
|
|
|
# Julia session in a state that reflects the point of computations
|
|
|
|
# at the position of the chapter where a given exercise is formulated
|
|
|
|
|
2021-12-29 16:08:09 +01:00
|
|
|
# Code for exercise 3.1
|
|
|
|
|
2022-02-08 22:59:40 +01:00
|
|
|
using BenchmarkTools
|
|
|
|
x = 1:10^6;
|
|
|
|
y = collect(x);
|
|
|
|
@btime sort($x);
|
|
|
|
@btime sort($y);
|
|
|
|
@edit sort(x)
|
|
|
|
|
2022-02-11 00:14:38 +01:00
|
|
|
# Code for exercise 4.1
|
2022-02-08 22:59:40 +01:00
|
|
|
|
2021-12-29 16:08:09 +01:00
|
|
|
using Statistics
|
|
|
|
using BenchmarkTools
|
|
|
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
|
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
|
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
|
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
|
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
|
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
|
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
|
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
|
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
|
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
|
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89];
|
|
|
|
@benchmark [cor($aq[:, i], $aq[:, i+1]) for i in 1:2:7]
|
|
|
|
@benchmark [cor(view($aq, :, i), view($aq, :, i+1)) for i in 1:2:7]
|
|
|
|
|
2022-02-11 00:14:38 +01:00
|
|
|
# Code for exercise 4.2
|
2021-12-29 16:08:09 +01:00
|
|
|
|
|
|
|
function dice_distribution(dice1, dice2)
|
|
|
|
distribution = Dict{Int, Int}()
|
|
|
|
for i in dice1
|
|
|
|
for j in dice2
|
|
|
|
s = i + j
|
|
|
|
if haskey(distribution, s)
|
|
|
|
distribution[s] += 1
|
|
|
|
else
|
|
|
|
distribution[s] = 1
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
return distribution
|
|
|
|
end
|
|
|
|
|
|
|
|
function test_dice()
|
|
|
|
all_dice = [[1, x2, x3, x4, x5, x6]
|
|
|
|
for x2 in 2:11
|
|
|
|
for x3 in x2:11
|
|
|
|
for x4 in x3:11
|
|
|
|
for x5 in x4:11
|
|
|
|
for x6 in x5:11]
|
|
|
|
|
|
|
|
two_standard = dice_distribution(1:6, 1:6)
|
|
|
|
|
|
|
|
for d1 in all_dice, d2 in all_dice
|
|
|
|
test = dice_distribution(d1, d2)
|
|
|
|
if test == two_standard
|
|
|
|
println(d1, " ", d2)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
test_dice()
|
|
|
|
|
2022-02-11 00:14:38 +01:00
|
|
|
# Code for exercise 4.3
|
2021-12-29 16:08:09 +01:00
|
|
|
|
2022-01-17 11:20:58 +01:00
|
|
|
plot(scatter(data.set1.x, data.set1.y; legend=false),
|
|
|
|
scatter(data.set2.x, data.set2.y; legend=false),
|
|
|
|
scatter(data.set3.x, data.set3.y; legend=false),
|
|
|
|
scatter(data.set4.x, data.set4.y; legend=false))
|
|
|
|
|
2022-02-11 00:14:38 +01:00
|
|
|
# Code for exercise 5.1
|
2022-01-17 11:20:58 +01:00
|
|
|
|
|
|
|
parse.(Int, ["1", "2", "3"])
|
|
|
|
|
2022-02-11 00:14:38 +01:00
|
|
|
# CODES BELOW REQUIRE RE-NUMBERING
|
|
|
|
|
2022-01-17 11:20:58 +01:00
|
|
|
# Code for exercise 4.1
|
|
|
|
|
|
|
|
years_table = freqtable(years)
|
|
|
|
plot(names(years_table, 1), years_table; legend=false,
|
|
|
|
xlabel="year", ylabel="# of movies")
|
|
|
|
|
|
|
|
|
|
|
|
# Code for exercise 4.2
|
|
|
|
|
|
|
|
s3 = Symbol.(s1)
|
|
|
|
@benchmark sort($s3)
|
|
|
|
@benchmark unique($s1)
|
|
|
|
@benchmark unique($s2)
|
|
|
|
@benchmark unique($s3)
|
|
|
|
|
|
|
|
# Code for exercise 5.1
|
|
|
|
|
|
|
|
v = ["1", "2", missing, "4"]
|
|
|
|
[ismissing(x) ? missing : parse(Int, x) for x in v]
|
|
|
|
map(v) do x
|
|
|
|
if ismissing(x)
|
|
|
|
return missing
|
|
|
|
else
|
|
|
|
return parse(Int, x)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
using Missings
|
|
|
|
passmissing(parse).(Int, v)
|
|
|
|
|
|
|
|
# Code for exercise 5.2
|
|
|
|
|
|
|
|
using Dates
|
|
|
|
Date(2021, 1, 1):Month(1):Date(2021, 12, 1)
|
|
|
|
collect(Date(2021, 1, 1):Month(1):Date(2021, 12, 1))
|
|
|
|
|
|
|
|
# Code for exercise 6.1
|
|
|
|
|
|
|
|
using BenchmarkTools
|
|
|
|
@benchmark $puzzles."Rating"
|
|
|
|
|
|
|
|
# Code for exercise 6.2
|
|
|
|
|
|
|
|
using StatsBase
|
|
|
|
summarystats(puzzles[puzzles.Popularity .== 100, "NbPlays"])
|
|
|
|
summarystats(puzzles[puzzles.Popularity .== -100, "NbPlays"])
|
|
|
|
|
|
|
|
# Code for exercise 6.3
|
|
|
|
|
|
|
|
sum(length, values(rating_mapping))
|
|
|
|
nrow(good)
|
|
|
|
|
|
|
|
# Code for exercise 7.1
|
|
|
|
|
|
|
|
using BenchmarkTools
|
|
|
|
x = rand(10^6);
|
|
|
|
@btime DataFrame(x=$x);
|
|
|
|
@btime DataFrame(x=$x; copycols=false);
|
2022-01-19 18:24:17 +01:00
|
|
|
|
|
|
|
# Code for exercise 7.2
|
|
|
|
|
|
|
|
df1 = DataFrame(a=1,b=2)
|
|
|
|
df2 = DataFrame(b=3, a=4)
|
|
|
|
vcat(df1, df2)
|
|
|
|
vcat(df1, df2, cols=:orderequal)
|
|
|
|
|
|
|
|
# Code for exercise 7.3
|
|
|
|
|
|
|
|
function walk_unique_2ahead()
|
|
|
|
walk = DataFrame(x=0, y=0)
|
|
|
|
for _ in 1:10
|
|
|
|
current = walk[end, :]
|
|
|
|
push!(walk, sim_step(current))
|
|
|
|
end
|
|
|
|
return all(walk[i, :] != walk[i+2, :] for i in 1:9)
|
|
|
|
end
|
|
|
|
Random.seed!(2);
|
|
|
|
proptable([walk_unique_2ahead() for _ in 1:10^5])
|
|
|
|
|
|
|
|
# Code for exercise 7.4
|
|
|
|
|
|
|
|
@time wide = DataFrame(ones(1, 10_000), :auto);
|
|
|
|
@time Tables.columntable(wide);
|
2022-01-27 15:28:42 +01:00
|
|
|
|
|
|
|
# Code for exercise 8.1
|
|
|
|
|
|
|
|
cg = complete_graph(37700)
|
|
|
|
Base.summarysize(cg)
|
|
|
|
@time deg_class(cg, classes_df.ml_target);
|
|
|
|
|
|
|
|
# Code for exercise 8.2
|
|
|
|
|
|
|
|
scatter(log1p.(agg_df.deg_ml),
|
|
|
|
log1p.(agg_df.deg_web);
|
|
|
|
zcolor=agg_df.web_mean,
|
|
|
|
xlabel="degree ml", ylabel="degree web",
|
|
|
|
markersize=2, markerstrokewidth=0, markeralpha=0.8,
|
|
|
|
legend=:topleft, labels = "fraction web",
|
|
|
|
xticks=gen_ticks(maximum(classes_df.deg_ml)),
|
|
|
|
yticks=gen_ticks(maximum(classes_df.deg_web)))
|
|
|
|
|
|
|
|
# Code for exercise 8.3
|
|
|
|
|
|
|
|
glm(@formula(ml_target~log1p(deg_ml)+log1p(deg_web)),
|
|
|
|
classes_df, Binomial(), ProbitLink())
|
|
|
|
|
|
|
|
# Code for exercise 8.4
|
|
|
|
|
|
|
|
df = DataFrame()
|
|
|
|
df.a = [1, 2, 3]
|
|
|
|
df.b = df.a
|
|
|
|
df.b === df.a
|
|
|
|
df.b = df[:, "b"]
|
|
|
|
df.b === df.a
|
|
|
|
df.b == df.a
|
|
|
|
df[1:2, "a"] .= 10
|
|
|
|
df
|