2022-02-08 20:58:33 +01:00
|
|
|
# Bogumił Kamiński, 2021
|
|
|
|
|
|
|
|
# Codes for chapter 3
|
|
|
|
|
|
|
|
# Code for listing 3.1
|
|
|
|
|
|
|
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
|
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
|
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
|
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
|
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
|
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
|
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
|
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
|
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
|
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
|
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]
|
|
|
|
|
|
|
|
# Code for checking size of a matrix
|
|
|
|
|
|
|
|
size(aq)
|
|
|
|
size(aq, 1)
|
|
|
|
size(aq, 2)
|
|
|
|
|
|
|
|
# Code comparing tuple to a vector
|
|
|
|
|
|
|
|
v = [1, 2, 3]
|
|
|
|
t = (1, 2, 3)
|
|
|
|
v[1]
|
|
|
|
t[1]
|
|
|
|
v[1] = 10
|
|
|
|
v
|
|
|
|
t[1] = 10
|
|
|
|
|
|
|
|
# Code for figure 3.2
|
|
|
|
|
|
|
|
using BenchmarkTools
|
|
|
|
@benchmark (1, 2, 3)
|
|
|
|
@benchmark [1, 2, 3]
|
|
|
|
|
|
|
|
# Code for section 3.1.2
|
|
|
|
|
|
|
|
using Statistics
|
|
|
|
mean(aq; dims=1)
|
|
|
|
std(aq; dims=1)
|
|
|
|
|
|
|
|
map(mean, eachcol(aq))
|
|
|
|
map(std, eachcol(aq))
|
|
|
|
|
|
|
|
map(eachcol(aq)) do col
|
|
|
|
mean(col)
|
|
|
|
end
|
|
|
|
|
|
|
|
[mean(col) for col in eachcol(aq)]
|
|
|
|
[std(col) for col in eachcol(aq)]
|
|
|
|
|
|
|
|
# Code for section 3.1.3
|
|
|
|
|
|
|
|
[mean(aq[:, j]) for j in axes(aq, 2)]
|
|
|
|
[std(aq[:, j]) for j in axes(aq, 2)]
|
|
|
|
|
|
|
|
axes(aq, 2)
|
|
|
|
?Base.OneTo
|
|
|
|
|
|
|
|
[mean(view(aq, :, j)) for j in axes(aq, 2)]
|
|
|
|
[std(@view aq[:, j]) for j in axes(aq, 2)]
|
|
|
|
|
|
|
|
# Code for section 3.1.4
|
|
|
|
|
|
|
|
using BenchmarkTools
|
|
|
|
x = ones(10^7, 10)
|
|
|
|
@benchmark [mean(@view $x[:, j]) for j in axes($x, 2)]
|
|
|
|
@benchmark [mean($x[:, j]) for j in axes($x, 2)]
|
|
|
|
@benchmark mean($x, dims=1)
|
|
|
|
|
|
|
|
# Code for section 3.1.5
|
|
|
|
|
|
|
|
[cor(aq[:, i], aq[:, i+1]) for i in 1:2:7]
|
|
|
|
collect(1:2:7)
|
|
|
|
|
|
|
|
# Code for section 3.1.6
|
|
|
|
|
|
|
|
y = aq[:, 2]
|
|
|
|
X = [ones(11) aq[:, 1]]
|
|
|
|
X \ y
|
|
|
|
[[ones(11) aq[:, i]] \ aq[:, i+1] for i in 1:2:7]
|
|
|
|
|
|
|
|
function R²(x, y)
|
|
|
|
X = [ones(11) x]
|
|
|
|
model = X \ y
|
|
|
|
prediction = X * model
|
|
|
|
error = y - prediction
|
|
|
|
SS_res = sum(v -> v ^ 2, error)
|
|
|
|
mean_y = mean(y)
|
|
|
|
SS_tot = sum(v -> (v - mean_y) ^ 2, y)
|
|
|
|
return 1 - SS_res / SS_tot
|
|
|
|
end
|
|
|
|
[R²(aq[:, i], aq[:, i+1]) for i in 1:2:7]
|
|
|
|
|
|
|
|
?²
|
|
|
|
|
|
|
|
# Code for section 3.1.7
|
|
|
|
|
|
|
|
using Plots
|
|
|
|
scatter(aq[:, 1], aq[:, 2]; legend=false)
|
|
|
|
|
|
|
|
plot(scatter(aq[:, 1], aq[:, 2]; legend=false),
|
|
|
|
scatter(aq[:, 3], aq[:, 4]; legend=false),
|
|
|
|
scatter(aq[:, 5], aq[:, 6]; legend=false),
|
|
|
|
scatter(aq[:, 7], aq[:, 8]; legend=false))
|
|
|
|
|
|
|
|
plot([scatter(aq[:, i], aq[:, i+1]; legend=false)
|
|
|
|
for i in 1:2:7]...)
|
|
|
|
|
|
|
|
# Code for section 3.2
|
|
|
|
|
|
|
|
two_standard = Dict{Int, Int}()
|
|
|
|
for i in [1, 2, 3, 4, 5, 6]
|
|
|
|
for j in [1, 2, 3, 4, 5, 6]
|
|
|
|
s = i + j
|
|
|
|
if haskey(two_standard, s)
|
|
|
|
two_standard[s] += 1
|
|
|
|
else
|
|
|
|
two_standard[s] = 1
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
two_standard
|
|
|
|
|
|
|
|
keys(two_standard)
|
|
|
|
values(two_standard)
|
|
|
|
|
|
|
|
using Plots
|
|
|
|
scatter(collect(keys(two_standard)), collect(values(two_standard));
|
|
|
|
legend=false, xaxis=2:12)
|
|
|
|
|
|
|
|
all_dice = [[1, x2, x3, x4, x5, x6]
|
|
|
|
for x2 in 2:11
|
|
|
|
for x3 in x2:11
|
|
|
|
for x4 in x3:11
|
|
|
|
for x5 in x4:11
|
|
|
|
for x6 in x5:11]
|
|
|
|
|
|
|
|
for d1 in all_dice, d2 in all_dice
|
|
|
|
test = Dict{Int, Int}()
|
|
|
|
for i in d1, j in d2
|
|
|
|
s = i + j
|
|
|
|
if haskey(test, s)
|
|
|
|
test[s] += 1
|
|
|
|
else
|
|
|
|
test[s] = 1
|
|
|
|
end
|
|
|
|
end
|
|
|
|
if test == two_standard
|
|
|
|
println(d1, " ", d2)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
# Code for section 3.3
|
|
|
|
|
|
|
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
|
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
|
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
|
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
|
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
|
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
|
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
|
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
|
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
|
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
|
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]
|
|
|
|
|
|
|
|
dataset1 = (x=aq[:, 1], y=aq[:, 2])
|
|
|
|
|
|
|
|
dataset1[1]
|
|
|
|
dataset1.x
|
|
|
|
|
|
|
|
# Code for listing 3.2
|
|
|
|
|
|
|
|
data = (set1=(x=aq[:, 1], y=aq[:, 2]),
|
|
|
|
set2=(x=aq[:, 3], y=aq[:, 4]),
|
|
|
|
set3=(x=aq[:, 5], y=aq[:, 6]),
|
|
|
|
set4=(x=aq[:, 7], y=aq[:, 8]))
|
|
|
|
|
|
|
|
# Code for section 3.3.2
|
|
|
|
|
|
|
|
using Statistics
|
|
|
|
map(s -> mean(s.x), data)
|
|
|
|
|
|
|
|
map(s -> cor(s.x, s.y), data)
|
|
|
|
|
|
|
|
using GLM
|
|
|
|
model = lm(@formula(y ~ x), data.set1)
|
|
|
|
|
|
|
|
r2(model)
|
|
|
|
|
|
|
|
# Code for section 3.3.3
|
|
|
|
|
|
|
|
model.mm
|
|
|
|
|
2022-02-09 23:47:36 +01:00
|
|
|
x = [3, 1, 3, 2]
|
|
|
|
unique(x)
|
2022-02-08 20:58:33 +01:00
|
|
|
x
|
2022-02-09 23:47:36 +01:00
|
|
|
unique!(x)
|
2022-02-08 20:58:33 +01:00
|
|
|
x
|
|
|
|
|
|
|
|
empty_field!(nt, i) = empty!(nt[i])
|
|
|
|
nt = (dict = Dict("a" => 1, "b" => 2), int=10)
|
|
|
|
empty_field!(nt, 1)
|
|
|
|
nt
|
|
|
|
|
|
|
|
# Code for section 3.4.1
|
|
|
|
|
|
|
|
x = [1 2 3]
|
|
|
|
y = [1, 2, 3]
|
|
|
|
x * y
|
|
|
|
|
|
|
|
a = [1, 2, 3]
|
|
|
|
b = [4, 5, 6]
|
|
|
|
a * b
|
|
|
|
|
|
|
|
a .* b
|
|
|
|
|
|
|
|
map(*, a, b)
|
|
|
|
[a[i] * b[i] for i in eachindex(a, b)]
|
|
|
|
|
|
|
|
eachindex(a, b)
|
|
|
|
|
|
|
|
eachindex([1, 2, 3], [4, 5])
|
|
|
|
|
|
|
|
map(*, [1, 2, 3], [4, 5])
|
|
|
|
|
|
|
|
[1, 2, 3] .* [4, 5]
|
|
|
|
|
|
|
|
# Code for section 3.4.2
|
|
|
|
|
|
|
|
[1, 2, 3] .* [4]
|
|
|
|
|
|
|
|
[1, 2, 3] .^ 2
|
|
|
|
|
|
|
|
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] .* [1 2 3 4 5 6 7 8 9 10]
|
|
|
|
|
|
|
|
["x", "y", "z"] .=> [sum minimum maximum]
|
|
|
|
|
|
|
|
abs.([1, -2, 3, -4])
|
|
|
|
|
|
|
|
abs([1, 2, 3])
|
|
|
|
|
|
|
|
string(1, 2, 3)
|
|
|
|
|
|
|
|
string.("x", 1:10)
|
|
|
|
|
|
|
|
f(i::Int) = string("got integer ", i)
|
|
|
|
f(s::String) = string("got string ", s)
|
|
|
|
f.([1, "1"])
|
|
|
|
|
|
|
|
# Code for section 3.4.3
|
|
|
|
|
|
|
|
in(1, [1, 2, 3])
|
|
|
|
in(4, [1, 2, 3])
|
|
|
|
|
|
|
|
in([1, 3, 5, 7, 9], [1, 2, 3, 4])
|
|
|
|
|
|
|
|
in.([1, 3, 5, 7, 9], [1, 2, 3, 4])
|
|
|
|
|
|
|
|
in.([1, 3, 5, 7, 9], Ref([1, 2, 3, 4]))
|
|
|
|
|
|
|
|
# Code for section 3.4.4
|
|
|
|
|
|
|
|
aq = [10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
|
|
|
|
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
|
|
|
|
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
|
|
|
|
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
|
|
|
|
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
|
|
|
|
14.0 9.96 14.0 8.1 14.0 8.84 8.0 7.04
|
|
|
|
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
|
|
|
|
4.0 4.26 4.0 3.1 4.0 5.39 19.0 12.50
|
|
|
|
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
|
|
|
|
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
|
|
|
|
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89]
|
|
|
|
using Statistics
|
|
|
|
|
|
|
|
mean.(eachcol(aq))
|
|
|
|
|
|
|
|
mean(eachcol(aq))
|
|
|
|
|
|
|
|
function R²(x, y)
|
|
|
|
X = [ones(11) x]
|
|
|
|
model = X \ y
|
|
|
|
prediction = X * model
|
|
|
|
error = y - prediction
|
|
|
|
SS_res = sum(v -> v ^ 2, error)
|
|
|
|
mean_y = mean(y)
|
|
|
|
SS_tot = sum(v -> (v - mean_y) ^ 2, y)
|
|
|
|
return 1 - SS_res / SS_tot
|
|
|
|
end
|
|
|
|
|
|
|
|
function R²(x, y)
|
|
|
|
X = [ones(11) x]
|
|
|
|
model = X \ y
|
|
|
|
prediction = X * model
|
|
|
|
SS_res = sum((y .- prediction) .^ 2)
|
|
|
|
SS_tot = sum((y .- mean(y)) .^ 2)
|
|
|
|
return 1 - SS_res / SS_tot
|
|
|
|
end
|
|
|
|
|
|
|
|
# Code for section 3.5
|
|
|
|
|
|
|
|
[]
|
|
|
|
Dict()
|
|
|
|
|
|
|
|
Float64[1, 2, 3]
|
|
|
|
|
|
|
|
Dict{UInt8, Float64}(0 => 0, 1 => 1)
|
|
|
|
|
|
|
|
UInt32(200)
|
|
|
|
|
|
|
|
Real[1, 1.0, 0x3]
|
|
|
|
|
|
|
|
v1 = Any[1, 2, 3]
|
|
|
|
eltype(v1)
|
|
|
|
v2 = Float64[1, 2, 3]
|
|
|
|
eltype(v2)
|
|
|
|
v3 = [1, 2, 3]
|
|
|
|
eltype(v2)
|
|
|
|
d1 = Dict()
|
|
|
|
eltype(d1)
|
|
|
|
d2 = Dict(1 => 2, 3 => 4)
|
|
|
|
eltype(d2)
|
|
|
|
|
|
|
|
p = 1 => 2
|
|
|
|
typeof(p)
|
|
|
|
|
|
|
|
# Code for section 3.5.1
|
|
|
|
|
|
|
|
[1, 2, 3] isa AbstractVector{Int}
|
|
|
|
[1, 2, 3] isa AbstractVector{Real}
|
|
|
|
|
|
|
|
AbstractVector{<:Real}
|
|
|
|
|
|
|
|
# Code for section 3.5.2
|
|
|
|
|
|
|
|
using Statistics
|
|
|
|
function ourcov(x::AbstractVector{<:Real},
|
|
|
|
y::AbstractVector{<:Real})
|
|
|
|
len = length(x)
|
|
|
|
@assert len == length(y) > 0
|
|
|
|
return sum((x .- mean(x)) .* (y .- mean(y))) / (len - 1)
|
|
|
|
end
|
|
|
|
|
|
|
|
ourcov(1:4, [1.0, 3.0, 2.0, 4.0])
|
|
|
|
cov(1:4, [1.0, 3.0, 2.0, 4.0])
|
|
|
|
|
|
|
|
ourcov(1:4, Any[1.0, 3.0, 2.0, 4.0])
|
|
|
|
|
|
|
|
x = Any[1, 2, 3]
|
|
|
|
identity.(x)
|
|
|
|
y = Any[1, 2.0]
|
|
|
|
identity.(y)
|