JuliaForDataAnalysis/exercises/exercises10.md

306 lines
8.3 KiB
Markdown
Raw Normal View History

2022-10-14 12:27:04 +02:00
# Julia for Data Analysis
## Bogumił Kamiński, Daniel Kaszyński
# Chapter 10
# Problems
### Exercise 1
Generate a random matrix `mat` having size 5x4 and all elements drawn
independently and uniformly from the [0,1[ interval.
Create a data frame using data from this matrix using auto-generated
column names.
<details>
2022-10-14 13:43:12 +02:00
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> using DataFrames
julia> mat = rand(5, 4)
5×4 Matrix{Float64}:
0.8386 0.83612 0.0353994 0.15547
0.590172 0.611815 0.0691152 0.915788
0.879395 0.07271 0.980079 0.655158
0.340435 0.756196 0.0697535 0.388578
0.714515 0.861872 0.971521 0.176768
julia> DataFrame(mat, :auto)
5×4 DataFrame
Row │ x1 x2 x3 x4
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────────
1 │ 0.8386 0.83612 0.0353994 0.15547
2 │ 0.590172 0.611815 0.0691152 0.915788
3 │ 0.879395 0.07271 0.980079 0.655158
4 │ 0.340435 0.756196 0.0697535 0.388578
5 │ 0.714515 0.861872 0.971521 0.176768
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 2
2022-10-14 13:43:12 +02:00
Now, using matrix `mat` create a data frame with randomly generated
column names. Use the `randstring` function from the `Random` module
to generate them. Store this data frame in `df` variable.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> using Random
julia> df = DataFrame(mat, [randstring() for _ in 1:4])
5×4 DataFrame
Row │ 6mTK5evn K8Inf7ER 5Caz55k0 SRiGemsa
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────────
1 │ 0.8386 0.83612 0.0353994 0.15547
2 │ 0.590172 0.611815 0.0691152 0.915788
3 │ 0.879395 0.07271 0.980079 0.655158
4 │ 0.340435 0.756196 0.0697535 0.388578
5 │ 0.714515 0.861872 0.971521 0.176768
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 3
2022-10-14 13:43:12 +02:00
Create a new data frame, taking `df` as a source that will have the same
columns but its column names will be `y1`, `y2`, `y3`, `y4`.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> DataFrame(["y$i" => df[!, i] for i in 1:4])
5×4 DataFrame
Row │ y1 y2 y3 y4
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────────
1 │ 0.8386 0.83612 0.0353994 0.15547
2 │ 0.590172 0.611815 0.0691152 0.915788
3 │ 0.879395 0.07271 0.980079 0.655158
4 │ 0.340435 0.756196 0.0697535 0.388578
5 │ 0.714515 0.861872 0.971521 0.176768
```
You could also use the `raname` function:
```
julia> rename(df, string.("y", 1:4))
5×4 DataFrame
Row │ y1 y2 y3 y4
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────────
1 │ 0.8386 0.83612 0.0353994 0.15547
2 │ 0.590172 0.611815 0.0691152 0.915788
3 │ 0.879395 0.07271 0.980079 0.655158
4 │ 0.340435 0.756196 0.0697535 0.388578
5 │ 0.714515 0.861872 0.971521 0.176768
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 4
2022-10-14 13:43:12 +02:00
Create a dictionary holding `column_name => column_vector` pairs
using data stored in data frame `df`. Save this dictionary in variable `d`.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> d = Dict([n => df[:, n] for n in names(df)])
Dict{String, Vector{Float64}} with 4 entries:
"6mTK5evn" => [0.8386, 0.590172, 0.879395, 0.340435, 0.714515]
"5Caz55k0" => [0.0353994, 0.0691152, 0.980079, 0.0697535, 0.971521]
"K8Inf7ER" => [0.83612, 0.611815, 0.07271, 0.756196, 0.861872]
"SRiGemsa" => [0.15547, 0.915788, 0.655158, 0.388578, 0.176768]
```
or (using the `pairs` function; note that this time column names are `Symbol`):
```
julia> Dict(pairs(eachcol(df)))
Dict{Symbol, AbstractVector} with 4 entries:
Symbol("6mTK5evn") => [0.8386, 0.590172, 0.879395, 0.340435, 0.714515]
:SRiGemsa => [0.15547, 0.915788, 0.655158, 0.388578, 0.176768]
:K8Inf7ER => [0.83612, 0.611815, 0.07271, 0.756196, 0.861872]
Symbol("5Caz55k0") => [0.0353994, 0.0691152, 0.980079, 0.0697535, 0.971521]
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 5
2022-10-14 13:43:12 +02:00
Create a data frame back from dictionary `d` from exercise 4. Compare it
with `df`.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> DataFrame(d)
5×4 DataFrame
Row │ 5Caz55k0 6mTK5evn K8Inf7ER SRiGemsa
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────────
1 │ 0.0353994 0.8386 0.83612 0.15547
2 │ 0.0691152 0.590172 0.611815 0.915788
3 │ 0.980079 0.879395 0.07271 0.655158
4 │ 0.0697535 0.340435 0.756196 0.388578
5 │ 0.971521 0.714515 0.861872 0.176768
```
Note that columns of a data frame are now sorted by their names.
This is done for `Dict` objects because such dictionaries do not have
a defined order of keys.
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 6
2022-10-14 13:43:12 +02:00
For data frame `df` compute the dot product between all pairs of its columns.
Use the `dot` function from the `LinearAlgebra` module.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> using LinearAlgebra
julia> using StatsBase
julia> pairwise(dot, eachcol(df))
4×4 Matrix{Float64}:
2.45132 1.99944 1.65026 1.50558
1.99944 2.39336 1.03322 1.18411
1.65026 1.03322 1.9153 0.909744
1.50558 1.18411 0.909744 1.47431
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 7
2022-10-14 13:43:12 +02:00
Given two data frames:
```
julia> df1 = DataFrame(a=1:2, b=11:12)
2×2 DataFrame
Row │ a b
│ Int64 Int64
─────┼──────────────
1 │ 1 11
2 │ 2 12
julia> df2 = DataFrame(a=1:2, c=101:102)
2×2 DataFrame
Row │ a c
│ Int64 Int64
─────┼──────────────
1 │ 1 101
2 │ 2 102
```
vertically concatenate them so that only columns that are present in both
data frames are kept. Check the documentation of `vcat` to see how to
do it.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> vcat(df1, df2, cols=:intersect)
4×1 DataFrame
Row │ a
│ Int64
─────┼───────
1 │ 1
2 │ 2
3 │ 1
4 │ 2
```
By default you will get an error:
```
julia> vcat(df1, df2)
ERROR: ArgumentError: column(s) c are missing from argument(s) 1, and column(s) b are missing from argument(s) 2
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 8
2022-10-14 13:43:12 +02:00
Now append to `df1` table `df2`, but add only the columns from `df2` that
are present in `df1`. Check the documentation of `append!` to see how to
do it.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
julia> append!(df1, df2, cols=:subset)
4×2 DataFrame
Row │ a b
│ Int64 Int64?
─────┼────────────────
1 │ 1 11
2 │ 2 12
3 │ 1 missing
4 │ 2 missing
```
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 9
2022-10-14 13:43:12 +02:00
Create a `circle` data frame, using the `push!` function that will store
1000 samples of the following process:
* draw `x` and `y` uniformly and independently from the [-1,1[ interval;
* compute a binary variable `inside` that is `true` if `x^2+y^2 < 1`
and is `false` otherwise.
Compute summary statistics of this data frame.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
circle=DataFrame()
for _ in 1:1000
x, y = 2rand()-1, 2rand()-1
inside = x^2 + y^2 < 1
push!(circle, (x=x, y=y, inside=inside))
end
describe(circle)
```
We note that mean of variable `inside` is approximately π.
2022-10-14 13:43:12 +02:00
</details>
2022-10-14 12:27:04 +02:00
### Exercise 10
2022-10-14 13:43:12 +02:00
Create a scatterplot of `circle` data frame where its `x` and `y` axis
will be the plotted points and `inside` variable will determine the color
of the plotted point.
<details>
<summary>Solution</summary>
2022-10-14 12:27:04 +02:00
```
using Plots
scatter(circle.x, circle.y, color=[i ? "black" : "red" for i in circle.inside], xlabel="x", ylabel="y", legend=false, size=(400, 400))
scatter(circle.x, circle.y, color=[i ? "black" : "red" for i in circle.inside], xlabel="x", ylabel="y", legend=false, aspect_ratio=:equal)
```
In the solution two ways to plot ensuring the ratio between x and y axis is 1
are shown. Note the differences in the produced output between the two methods.
</details>