# Numpy and pandas by default assume a narrow screen - this fixes that from fastai2.vision.all import * from nbdev.showdoc import * from ipywidgets import widgets from pandas.api.types import CategoricalDtype import matplotlib as mpl # mpl.rcParams['figure.dpi']= 200 mpl.rcParams['savefig.dpi']= 200 mpl.rcParams['font.size']=12 set_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False pd.set_option('display.max_columns',999) np.set_printoptions(linewidth=200) torch.set_printoptions(linewidth=200) import graphviz def gv(s): return graphviz.Source('digraph G{ rankdir="LR"' + s + '; }') def get_image_files_sorted(path, recurse=True, folders=None): return get_image_files(path, recurse, folders).sorted() # + # pip install azure-cognitiveservices-search-imagesearch from azure.cognitiveservices.search.imagesearch import ImageSearchClient as api from msrest.authentication import CognitiveServicesCredentials as auth def search_images_bing(key, term, min_sz=128): client = api('https://api.cognitive.microsoft.com', auth(key)) return L(client.images.search(query=term, count=150, min_height=min_sz, min_width=min_sz).value) # - def plot_function(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = torch.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) # + from sklearn.tree import export_graphviz def draw_tree(t, df, size=10, ratio=0.6, precision=0, **kwargs): s=export_graphviz(t, out_file=None, feature_names=df.columns, filled=True, rounded=True, special_characters=True, rotate=False, precision=precision, **kwargs) return graphviz.Source(re.sub('Tree {', f'Tree {{ size={size}; ratio={ratio}', s)) # + from scipy.cluster import hierarchy as hc def cluster_columns(df, figsize=(10,6), font_size=12): corr = np.round(scipy.stats.spearmanr(df).correlation, 4) corr_condensed = hc.distance.squareform(1-corr) z = hc.linkage(corr_condensed, method='average') fig = plt.figure(figsize=figsize) hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=font_size) plt.show()