images
This commit is contained in:
parent
dd985841b6
commit
d93ae33d92
@ -660,7 +660,7 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"img = PILImage.create('images/chapter1_cat_example.jpg')\n",
|
"img = PILImage.create(image_cat())\n",
|
||||||
"img.to_thumb(192)"
|
"img.to_thumb(192)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -730,7 +730,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"#hide\n",
|
"#hide\n",
|
||||||
"# For the book, we can't actually click an upload button, so we fake it\n",
|
"# For the book, we can't actually click an upload button, so we fake it\n",
|
||||||
"uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])"
|
"# uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2570,7 +2570,7 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"im = image2tensor(Image.open('images/grizzly.jpg'))\n",
|
"im = image2tensor(Image.open(image_bear()))\n",
|
||||||
"im.shape"
|
"im.shape"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -158,7 +158,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"img = PILImage.create('images/chapter1_cat_example.jpg')\n",
|
"img = PILImage.create(image_cat())\n",
|
||||||
"x, = first(dls.test_dl([img]))"
|
"x, = first(dls.test_dl([img]))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
File diff suppressed because one or more lines are too long
@ -133,7 +133,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"img = PILImage.create('images/chapter1_cat_example.jpg')\n",
|
"img = PILImage.create(image_cat())\n",
|
||||||
"img.to_thumb(192)"
|
"img.to_thumb(192)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -162,7 +162,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"#hide\n",
|
"#hide\n",
|
||||||
"# For the book, we can't actually click an upload button, so we fake it\n",
|
"# For the book, we can't actually click an upload button, so we fake it\n",
|
||||||
"uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])"
|
"# uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -472,7 +472,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"im = image2tensor(Image.open('images/grizzly.jpg'))\n",
|
"im = image2tensor(Image.open(image_bear()))\n",
|
||||||
"im.shape"
|
"im.shape"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -57,7 +57,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"img = PILImage.create('images/chapter1_cat_example.jpg')\n",
|
"img = PILImage.create(image_cat())\n",
|
||||||
"x, = first(dls.test_dl([img]))"
|
"x, = first(dls.test_dl([img]))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -7,11 +7,20 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"#hide\n",
|
"#hide\n",
|
||||||
"!pip install -Uqq fastbook\n",
|
"# !pip install -Uqq fastbook\n",
|
||||||
"import fastbook\n",
|
"import fastbook\n",
|
||||||
"fastbook.setup_book()"
|
"fastbook.setup_book()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from fastbook import *"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -149,7 +158,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"Image.open('images/chapter1_cat_example.jpg')"
|
"Image.open(image_cat())"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1,64 +0,0 @@
|
|||||||
# Numpy and pandas by default assume a narrow screen - this fixes that
|
|
||||||
from fastai.vision.all import *
|
|
||||||
from nbdev.showdoc import *
|
|
||||||
from ipywidgets import widgets
|
|
||||||
from pandas.api.types import CategoricalDtype
|
|
||||||
|
|
||||||
import matplotlib as mpl
|
|
||||||
# mpl.rcParams['figure.dpi']= 200
|
|
||||||
mpl.rcParams['savefig.dpi']= 200
|
|
||||||
mpl.rcParams['font.size']=12
|
|
||||||
|
|
||||||
set_seed(42)
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
torch.backends.cudnn.benchmark = False
|
|
||||||
pd.set_option('display.max_columns',999)
|
|
||||||
np.set_printoptions(linewidth=200)
|
|
||||||
torch.set_printoptions(linewidth=200)
|
|
||||||
|
|
||||||
import graphviz
|
|
||||||
def gv(s): return graphviz.Source('digraph G{ rankdir="LR"' + s + '; }')
|
|
||||||
|
|
||||||
def get_image_files_sorted(path, recurse=True, folders=None): return get_image_files(path, recurse, folders).sorted()
|
|
||||||
|
|
||||||
|
|
||||||
# +
|
|
||||||
# pip install azure-cognitiveservices-search-imagesearch
|
|
||||||
|
|
||||||
from azure.cognitiveservices.search.imagesearch import ImageSearchClient as api
|
|
||||||
from msrest.authentication import CognitiveServicesCredentials as auth
|
|
||||||
|
|
||||||
def search_images_bing(key, term, min_sz=128):
|
|
||||||
client = api('https://api.cognitive.microsoft.com', auth(key))
|
|
||||||
return L(client.images.search(query=term, count=150, min_height=min_sz, min_width=min_sz).value)
|
|
||||||
|
|
||||||
|
|
||||||
# -
|
|
||||||
|
|
||||||
def plot_function(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)):
|
|
||||||
x = torch.linspace(min,max)
|
|
||||||
fig,ax = plt.subplots(figsize=figsize)
|
|
||||||
ax.plot(x,f(x))
|
|
||||||
if tx is not None: ax.set_xlabel(tx)
|
|
||||||
if ty is not None: ax.set_ylabel(ty)
|
|
||||||
if title is not None: ax.set_title(title)
|
|
||||||
|
|
||||||
# +
|
|
||||||
from sklearn.tree import export_graphviz
|
|
||||||
|
|
||||||
def draw_tree(t, df, size=10, ratio=0.6, precision=0, **kwargs):
|
|
||||||
s=export_graphviz(t, out_file=None, feature_names=df.columns, filled=True, rounded=True,
|
|
||||||
special_characters=True, rotate=False, precision=precision, **kwargs)
|
|
||||||
return graphviz.Source(re.sub('Tree {', f'Tree {{ size={size}; ratio={ratio}', s))
|
|
||||||
|
|
||||||
|
|
||||||
# +
|
|
||||||
from scipy.cluster import hierarchy as hc
|
|
||||||
|
|
||||||
def cluster_columns(df, figsize=(10,6), font_size=12):
|
|
||||||
corr = np.round(scipy.stats.spearmanr(df).correlation, 4)
|
|
||||||
corr_condensed = hc.distance.squareform(1-corr)
|
|
||||||
z = hc.linkage(corr_condensed, method='average')
|
|
||||||
fig = plt.figure(figsize=figsize)
|
|
||||||
hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=font_size)
|
|
||||||
plt.show()
|
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user