Adding utils.py to the clean folder
This commit is contained in:
parent
62ac21d085
commit
102e716b47
65
clean/utils.py
Normal file
65
clean/utils.py
Normal file
@ -0,0 +1,65 @@
|
||||
|
||||
# Numpy and pandas by default assume a narrow screen - this fixes that
|
||||
from fastai2.vision.all import *
|
||||
from nbdev.showdoc import *
|
||||
from ipywidgets import widgets
|
||||
from pandas.api.types import CategoricalDtype
|
||||
|
||||
import matplotlib as mpl
|
||||
# mpl.rcParams['figure.dpi']= 200
|
||||
mpl.rcParams['savefig.dpi']= 200
|
||||
mpl.rcParams['font.size']=12
|
||||
|
||||
set_seed(42)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
pd.set_option('display.max_columns',999)
|
||||
np.set_printoptions(linewidth=200)
|
||||
torch.set_printoptions(linewidth=200)
|
||||
|
||||
import graphviz
|
||||
def gv(s): return graphviz.Source('digraph G{ rankdir="LR"' + s + '; }')
|
||||
|
||||
def get_image_files_sorted(path, recurse=True, folders=None): return get_image_files(path, recurse, folders).sorted()
|
||||
|
||||
|
||||
# +
|
||||
# pip install azure-cognitiveservices-search-imagesearch
|
||||
|
||||
from azure.cognitiveservices.search.imagesearch import ImageSearchClient as api
|
||||
from msrest.authentication import CognitiveServicesCredentials as auth
|
||||
|
||||
def search_images_bing(key, term, min_sz=128):
|
||||
client = api('https://api.cognitive.microsoft.com', auth(key))
|
||||
return L(client.images.search(query=term, count=150, min_height=min_sz, min_width=min_sz).value)
|
||||
|
||||
|
||||
# -
|
||||
|
||||
def plot_function(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)):
|
||||
x = torch.linspace(min,max)
|
||||
fig,ax = plt.subplots(figsize=figsize)
|
||||
ax.plot(x,f(x))
|
||||
if tx is not None: ax.set_xlabel(tx)
|
||||
if ty is not None: ax.set_ylabel(ty)
|
||||
if title is not None: ax.set_title(title)
|
||||
|
||||
# +
|
||||
from sklearn.tree import export_graphviz
|
||||
|
||||
def draw_tree(t, df, size=10, ratio=0.6, precision=0, **kwargs):
|
||||
s=export_graphviz(t, out_file=None, feature_names=df.columns, filled=True, rounded=True,
|
||||
special_characters=True, rotate=False, precision=precision, **kwargs)
|
||||
return graphviz.Source(re.sub('Tree {', f'Tree {{ size={size}; ratio={ratio}', s))
|
||||
|
||||
|
||||
# +
|
||||
from scipy.cluster import hierarchy as hc
|
||||
|
||||
def cluster_columns(df, figsize=(10,6), font_size=12):
|
||||
corr = np.round(scipy.stats.spearmanr(df).correlation, 4)
|
||||
corr_condensed = hc.distance.squareform(1-corr)
|
||||
z = hc.linkage(corr_condensed, method='average')
|
||||
fig = plt.figure(figsize=figsize)
|
||||
hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=font_size)
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user