
● Part 1 - Django Overview

● Part 2 - Set up your Development Environment

● Part 3 - Build a Django application

● Part 4 - Showcase your Projects

● Part 5 - Display a single Project

Build your portfolio site with Django
Getting started with Python’s most famous web framework

PART 1 - DJANGO OVERVIEW

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

Relax and enjoy the ride!

Relax and enjoy the ride!

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

Why use a web framework?

The web grew organically

The web grew organically

The web grew organically

The web grew organically

The web grew organically

The web grew organicallyThe web is a complex mess!!

Web frameworks reduce complexity

● Automate repetitive web development tasks

● Abstract database interactions

● Handle URL requests and URL mapping

● Provide templating frameworks

● Help with security, caching, sessions…

● Generally make your life easier :)

Web frameworks

Django is a Python web framework

● Fantastic community

● Time- and battle-tested

● Batteries included!

● Huge third-party package ecosystem

● Pluggable structure - reuse apps

● Django ORM for database interactions

● And… It’s in Python! :)

Why Django?

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

Your portfolio as a webapp!

1. How to build a Django project from start to finish

What you’ll learn in this course

1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

What you’ll learn in this course

1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

3. Get friendly with Django error messages

What you’ll learn in this course

1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

3. Get friendly with Django error messages

4. Hands-on debugging approaches during Django development

What you’ll learn in this course

1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

3. Get friendly with Django error messages

4. Hands-on debugging approaches during Django development

5. Understand Django projects and file structure

What you’ll learn in this course

1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

3. Get friendly with Django error messages

4. Hands-on debugging approaches during Django development

5. Understand Django projects and file structure

6. Understand how requests flow through Django apps

What you’ll learn in this course

1. Models, views, and templates

What you’ll learn in this course

1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

What you’ll learn in this course

1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

3. Interact with your DB from the Django Shell and the Django Admin Interface

What you’ll learn in this course

1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

3. Interact with your DB from the Django Shell and the Django Admin Interface

4. Using the Django Templating language and Template Inheritance

What you’ll learn in this course

1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

3. Interact with your DB from the Django Shell and the Django Admin Interface

4. Using the Django Templating language and Template Inheritance

5. URL resolving and correctly using path converters and namespaces

What you’ll learn in this course

1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

3. Interact with your DB from the Django Shell and the Django Admin Interface

4. Using the Django Templating language and Template Inheritance

5. URL resolving and correctly using path converters and namespaces

6. Using Bootstrap for style and mobile responsiveness

What you’ll learn in this course

Let’s get started!

Relax and enjoy the ride!

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

Apps in a Django project

PART 1 - DJANGO OVERVIEW
1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

Files in a Django project

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

Flow

In

A

Django

project

1. About this section

2. About Web Frameworks and Django

3. What you’ll build and learn

4. Apps in a Django project

5. Files in a Django project

6. Flow in a Django project

7. Recap and Outlook

PART 1 - DJANGO OVERVIEW

1. Got an overview of the upcoming video course content

What you did in this section

1. Got an overview of the upcoming video course content

2. Saw the file structure we’ll be learning to understand

What you did in this section

1. Got an overview of the upcoming video course content

2. Saw the file structure we’ll be learning to understand

3. Heard about the flow of a request through a Django app

What you did in this section

1. Got an overview of the upcoming video course content

2. Saw the file structure we’ll be learning to understand

3. Heard about the flow of a request through a Django app

4. Understood the pluggable nature of Django apps in projects

What you did in this section

1. Got an overview of the upcoming video course content

2. Saw the file structure we’ll be learning to understand

3. Heard about the flow of a request through a Django app

4. Understood the pluggable nature of Django apps in projects

What you did in this section

PART 2 - SET UP YOUR DEVELOPMENT
ENVIRONMENT

1. Python 3.x installed

2. A text editor or an IDE (e.g. PyCharm)

3. Beginner knowledge of using the CLI (Terminal)

What you need to continue

1. About this section

2. Set up your development environment

a. Using PyCharm

b. Creating a Virtual Environment

c. Installing Django

3. Create a Django project

4. Recap and Outlook

PART 2 - SET UP YOUR DEV. ENVIRONMENT

Create a Virtual Environment

Install Django using pip

1. About this section

2. Set up your development environment
a. Using PyCharm

b. Creating a Virtual Environment

c. Installing Django

3. Create a Django project

4. Recap and Outlook

PART 2 - SET UP YOUR DEV. ENVIRONMENT

1. About this section

2. Set up your development environment

a. Using PyCharm

b. Creating a Virtual Environment

c. Installing Django

3. Create a Django project

4. Recap and Outlook

PART 2 - SET UP YOUR DEV. ENVIRONMENT

1. About this section

2. Set up your development environment

a. Using PyCharm

b. Creating a Virtual Environment

c. Installing Django

3. Create a Django project

4. Recap and Outlook

PART 2 - SET UP YOUR DEV. ENVIRONMENT

1. Created a Virtual Environment in the CLI

What you did in this section

python3 -m venv .env

1. Activated the venv

source .env/bin/activate

1. Installed Django inside the venv

What you did in this section

(.env)$ pip install django

1. Created a Django project management app inside the existing folder

What you did in this section

(.env)$ django-admin startproject portfolio .

The dot avoids extra folders!

Visited the site at http://localhost:8000

What you did in this section

PART 3 - BUILD A DJANGO APPLICATION

1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Created a Django project called “portfolio”

3. Motivation to build a webapp :)

What you need to continue

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

Developing by error messages

Developing by error messages

Developing by error messages

Developing by error messages

Developing by error messages

Error messages are your friends!

Developing by error messages

Developing by error messages

Developing by error messages

A Django error message

Error messages are your friends!

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

Django settings

Time to meet a new friend!

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

Time to meet a new friend!

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

Time to meet a new friend!

Sneaking...

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

Flat folder structure

projects/templates app2/templates app3/templates

projects/templates app2/templates app3/templates

templates

projects/templates app2/templates app3/templates

templates

Troubles with flat folder structure

projects/templates app2/templates app3/templates

templates

index.html

projects/templates app2/templates app3/templates

templates

index.html

index.html

projects/templates app2/templates app3/templates

templates

index.html

index.html

index.html

projects/templates app2/templates app3/templates

templates

index.html

index.html

index.html

Django’s double-folder structure

projects/templates app2/templates app3/templates

templates

projects/index.html

app2/index.html

app3/index.html

projects/templates app2/templates app3/templates

templates

projects/index.html

app2/index.html

app3/index.html

projects/templates app2/templates app3/templates

templates

projects/index.html

app2/index.html

app3/index.html

projects/templates app2/templates app3/templates

templates

projects

app2

app3

templates

index.html

app2

index.html

projects

index.html

app3

Time to meet a new friend!

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

1. About this section

2. Django by error messages

3. Create a Django app

4. Build your routes

5. Create a view

6. Create a template

7. Add bootstrap to your app

8. Recap and Outlook

PART 3 - BUILD A DJANGO APPLICATION

1. Created a Django app called “projects”

What you did in this section

(.env)$ python manage.py startapp projects

1. Registered your app in settings.py

What you did in this section

INSTALLED_APPS = [
 # django apps
 # my apps
 "projects",
]

1. Dug your way through different URL configurations

What you did in this section

portfolio.urls

projects.urlsinclude()

path()

views.py

1. Created a view function that returns a HttpResponse object

What you did in this section

def project_list(request):
 return HttpResponse("<h1>Aye!</h1>")

1. Changed the view function to render a template instead

What you did in this section

def project_list(request):
 return render(request, "projects/index.html")

1. Created a Django template containing HTML code

What you did in this section

<body>
<h1>Hello template!</h1>

</body>

1. Understood the nested
template folder structure in Django

What you did in this section

templates

index.html

app2

index.html

projects

index.html

app3

1. Registered your new template folder in settings.py

What you did in this section

TEMPLATES = [
 {
 "DIRS": [os.path.join(BASE_DIR, "projects/templates"),]
 }
]

1. Added Bootstrap styling to your app

What you did in this section

<head>
<link rel="stylesheet" href="link-to-bootstrap-CDN/bootstrap.css">

</head>

And… most importantly:

1. PageNotFound

2. ModuleNotFoundError

3. ImproperlyConfigured

4. AttributeError

5. ValueError

6. TemplateDoesNotExist

You made a lot of new friends!!!

1. Developing by error messages

2. Getting familiar with common Django error messages

3. Practiced to read and follow helpful suggestions

4. Practiced to debug your code with the help of error messages

What you did in this section

Error messages are your friends!

PART 4: SHOWCASE YOUR PROJECTS

1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Django project called “portfolio”

3. Django app called “projects”

4. urls.py file in your “projects” app and correct routing

5. double-templates folder setup

What you need to continue

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Seriously serious!

PREVIEW: Projects app

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Django ORM

Object-
Relational
Mapper

O bject-
R elational
M apper

Python
O bject-
R elational
M apper

SQL

A (very) short intro to Relational DBs

id title description technology image

1 test This is a test Django /img/t.png

2 daily Write words Django /img/d.png

3 todo What to do? Tkinter /img/td.png

Project table

That’s a table!

id title description technology image

1 test This is a test Django /img/t.png

2 daily Write words Django /img/d.png

3 todo What to do? Tkinter /img/td.png

Project table

That’s a table!

Row

id title description technology image

1 test This is a test Django /img/t.png

2 daily Write words Django /img/d.png

3 todo What to do? Tkinter /img/td.png

Project table

That’s a table!

Column

class Project(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField()
 technology = models.CharField(max_length=20)
 image = models.FilePathField(path="/img")

class Project(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField()
 technology = models.CharField(max_length=20)
 image = models.FilePathField(path="/img")

class Project(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField()
 technology = models.CharField(max_length=20)
 image = models.FilePathField(path="/img")

In our app...

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Migrations

Inside a SQLite file

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Django’s double-folder structure

projects/templates app2/templates app3/templates

templates

projects

app2

app3

projects/static app2/static app3/static

static

projects

app2

app3

static

img

app2

img

projects

img

app3

Let’s fix th0t!

Let’s fix th0t!

Let’s fix that!

Let’s fix that!

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Error messages are your friends!

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Error messages are your friends!

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

Django Templating Language

{% code logic %}

{{ variables }}

Adding data through the Django Shell

Error messages are your friends!

Debugging

Debugging

Debugging

Debugging

Debugging

Debugging

Changing Models and the DB

1) makemigrations

2) migrate

Changing Column Datatypes

Error messages are your friends!

Template Inheritance

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

1. About this section
2. Django Models
3. Migrations and your SQL Database
4. Add static files
5. Use the Django Shell
6. Build your routes
7. Create your views
8. Create your templates
9. Add some style!

10. Recap and Outlook

PART 4 - SHOWCASE YOUR PROJECTS

1. Created a Django Model

What you did in this section

class Project(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField()
 technology = models.CharField(max_length=20)
 image = models.CharField(max_length=100)

1. Learned about ORMs (Object-Relational Mappers)

What you did in this section

Python

ORM

SQL

1. Learned about ORMs (Object-Relational Mappers)

What you did in this section

class Project(models.Model):
 title = models.CharField(max_length=100)
 description = models.TextField()
 technology = models.CharField(max_length=20)
 image = models.CharField(max_length=100)

1. Learned about Relational Databases

What you did in this section

id title description technology image

1 test This is a test Django /img/t.png

2 daily Write words Django /img/d.png

3 todo What to do? Tkinter /img/td.png

Project table
Column

Row

1. Peeked into a Django Migrations file

2. Peeked into a SQLite Database File

What you did in this section

1. Revisited the nested
template folder structure in Django

What you did in this section

templates

index.html

app2

index.html

projects

index.html

app3

1. Added static image files to your project

2. Linked those image files correctly

What you did in this section

{% load static %}

1. Used the Django Shell to create and edit data in your DB

What you did in this section

projects = Project.objects.all()
p1 = projects[0]
p1.image = "changed/path"
p1.save()

1. Created new URL paths

What you did in this section

portfolio.urls

projects.urlsinclude()

path()

views.py

1. Queried the DB from your views

2. Passed data on to your template files

What you did in this section

return render(request, "template.html", {"projects": projects})

1. Used Django Templating Syntax

What you did in this section

{% code logic %} {{ variables }}

1. Applied more Bootstrap styling

What you did in this section

1. Some serious debugging!!!

What you did in this section

PART 5 - DISPLAY A SINGLE PROJECT

1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Django project “portfolio” with app “projects”

3. Projects in the Database

4. Portfolio page listing all projects

What you need to continue

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

Back into the Django Shell

What’s pk?

pk means “primary key”

pk means “primary key”

In our project: pk == id

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

Capturing URL parts with < >

Capturing URL parts with < >

Capturing URL parts

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

Capturing URL parts

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1
< >

Capturing URL parts

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

< 1 >

Capturing URL parts

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

< pk=1 >

Path converters - int:

What path converters do

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

What path converters do

http://localhost:8000/projects/gimmeprojects

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

What path converters do

http://localhost:8000/projects/gimmeprojects

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

What path converters do

http://localhost:8000/projects/gimmeprojects

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

What path converters do

http://localhost:8000/projects/gimmeprojects

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

Views: the code logic

Resolving URLs

http://localhost:8000/projects/1

def project_detail(request, pk):
 project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

urls.py

Resolving URLs

http://localhost:8000/projects/1

def project_detail(request, pk):
 project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

urls.py

Testing: Can we access a single resource?

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

Linking two templates

NoReverseMatch

Giving names to patterns

Giving names to patterns

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

Giving names to patterns

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

Read More

Giving names to patterns
app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

Read More

Read More

Giving names to patterns
app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail)
]

Read More

Giving names to patterns
app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

Read More

Giving names to patterns
app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

Read More

Giving names to patterns
app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

Identifies Django view

NoReverseMatch (but a different one)

Passing arguments for retrieving URLs

Read More

Passing arguments for retrieving URLs

your_template.html

Read More

Passing arguments for retrieving URLs

your_template.html

http://localhost:8000/projects/1
Browser

Read More

Passing arguments for retrieving URLs

your_template.html

http://localhost:8000/projects/1

def project_detail(request, pk):
 project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

NoReverseMatch

Debugging

Check first in these places!

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py

Check first in these places!

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py

Check first in these places!

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py

Read More

Check first in these places!

2) your_template.html

Read More

Check first in these places!

2) your_template.html

Read More

NoReverseMatch Debugging 1: Identify view

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py

Read More

Check first in these places!

your_template.html

Read More

Check first in these places!

your_template.html

http://localhost:8000/projects/1
Browser

Read More

Check first in these places!

your_template.html

http://localhost:8000/projects/1

def project_detail(request, pk):
 project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

Read More

NoReverseMatch Debugging 2: Pass arguments

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py

Debugging Summary

Debugging Summary

Read More

NoReverseMatch Debugging Summary

app_name = "projects"

urlpatterns = [
 path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py

1) Identify view

2) Pass arguments

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

DRY - don’t repeat yourself

File 1: base.html

{% block content %}
{% endblock %}

base.html

{% block content %}

{% endblock %}

base.html

{% block content %}

{% endblock %}

base.html

{% block content %}

<div>My HTML content</div>

{% endblock %}

base.html

File 2: your_template.html

{% extends ‘base.html’ %}

{% block content %}

{% endblock %}

your_template.html

{% extends ‘base.html’ %}

{% block content %}

{% endblock %}

your_template.html

{% extends ‘base.html’ %}

{% block content %}

<div>My HTML content</div>

{% endblock %}

your_template.html

In practice!

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

Mobile responsive!

<meta name="viewport" content="width=device-width, initial-scale=1.0">

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

A convenient way of accessing your DB

Creating a superuser

Registering your models

1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT

1. Using the Django ORM in the shell and in views.py

2. Learned about primary keys (pk)

What you did in this section

1. Lasso-ed parts from URLs using angle brackets < >

What you did in this section

http://localhost:8000/projects/1
< >

1. Used an int: path converter to verify the URL path’s datatype

What you did in this section

http://localhost:8000/projects/gimmeprojects

http://localhost:8000/projects/1

1. Defining proper namespaces for linking and reverse URL matching

What you did in this section

Read More

urls.py

1. Passing arguments inside of URL template tags

What you did in this section

Read More

urls.py

path('<arg>', views.function_name, name='name')

1. Debugging NoReverseMatch Error

What you did in this section

● Identify view
● Pass arguments your_template.htmlurls.py

1. DRY - don’t repeat yourself

2. Template inheritance

What you did in this section

{% extends ‘base.html’ %}

{% block content %}
{% endblock %}

1. Bootstrap header

2. Make the site mobile responsive

What you did in this section

<meta name="viewport" content="width=device-width, initial-scale=1.0">

1. Create a superuser

2. Register your models in Django admin

3. Add/Edit/Delete DB entries conveniently

What you did in this section

CONGRATULATIONS!!

What you built

Share your knowledge with a Blog

Keep learning!

