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The web grew organicallyThe web is a complex mess!!



Web frameworks reduce complexity



● Automate repetitive web development tasks

● Abstract database interactions

● Handle URL requests and URL mapping

● Provide templating frameworks

● Help with security, caching, sessions…

● Generally make your life easier :)

Web frameworks





Django is a Python web framework



● Fantastic community

● Time- and battle-tested

● Batteries included!

● Huge third-party package ecosystem

● Pluggable structure - reuse apps

● Django ORM for database interactions

● And… It’s in Python! :)

Why Django?
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Your portfolio as a webapp!



1. How to build a Django project from start to finish
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1. How to build a Django project from start to finish

2. We’ll do lot’s of Django deep-dives, asking: how does this actually work?

3. Get friendly with Django error messages

4. Hands-on debugging approaches during Django development

5. Understand Django projects and file structure

6. Understand how requests flow through Django apps

What you’ll learn in this course
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1. Models, views, and templates

2. Primer on Relational Databases and using the Django ORM

3. Interact with your DB from the Django Shell and the Django Admin Interface

4. Using the Django Templating language and Template Inheritance

5. URL resolving and correctly using path converters and namespaces

6. Using Bootstrap for style and mobile responsiveness

What you’ll learn in this course



Let’s get started!



Relax and enjoy the ride!
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2. Saw the file structure we’ll be learning to understand

3. Heard about the flow of a request through a Django app

4. Understood the pluggable nature of Django apps in projects
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PART 2 - SET UP YOUR DEVELOPMENT 
ENVIRONMENT



1. Python 3.x installed

2. A text editor or an IDE (e.g. PyCharm)

3. Beginner knowledge of using the CLI (Terminal)

What you need to continue
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Create a Virtual Environment



Install Django using pip
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1. Created a Virtual Environment in the CLI

What you did in this section

python3 -m venv .env

1. Activated the venv

source .env/bin/activate



1. Installed Django inside the venv

What you did in this section

(.env)$ pip install django



1. Created a Django project management app inside the existing folder

What you did in this section

(.env)$ django-admin startproject portfolio .

The dot avoids extra folders!



Visited the site at http://localhost:8000

What you did in this section



PART 3 - BUILD A DJANGO APPLICATION



1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Created a Django project called “portfolio”

3. Motivation to build a webapp : )

What you need to continue
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Developing by error messages



A Django error message



Error messages are your friends!
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Django settings



Time to meet a new friend!
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Time to meet a new friend!



Sneaking...
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Flat folder structure
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projects/templates app2/templates app3/templates

templates



projects/templates app2/templates app3/templates

templates



Troubles with flat folder structure
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Django’s double-folder structure
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Time to meet a new friend!
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1. Created a Django app called “projects”

What you did in this section

(.env)$ python manage.py startapp projects



1. Registered your app in settings.py

What you did in this section

INSTALLED_APPS = [
    # django apps
    # my apps
    "projects",
]



1. Dug your way through different URL configurations

What you did in this section

portfolio.urls

projects.urlsinclude()

path()

views.py



1. Created a view function that returns a HttpResponse object

What you did in this section

def project_list(request):
    return HttpResponse("<h1>Aye!</h1>")



1. Changed the view function to render a template instead

What you did in this section

def project_list(request):
    return render(request, "projects/index.html")



1. Created a Django template containing HTML code

What you did in this section

<body>
<h1>Hello template!</h1>

</body>



1. Understood the nested 
template folder structure in Django

What you did in this section

templates

index.html

app2

index.html

projects

index.html

app3



1. Registered your new template folder in settings.py

What you did in this section

TEMPLATES = [
    {
        "DIRS": [os.path.join(BASE_DIR, "projects/templates"),]
    }
]



1. Added Bootstrap styling to your app

What you did in this section

<head>
<link rel="stylesheet" href="link-to-bootstrap-CDN/bootstrap.css">

</head>



And… most importantly:



1. PageNotFound

2. ModuleNotFoundError

3. ImproperlyConfigured

4. AttributeError

5. ValueError

6.  TemplateDoesNotExist

You made a lot of new friends!!!



1. Developing by error messages

2. Getting familiar with common Django error messages

3. Practiced to read and follow helpful suggestions

4. Practiced to debug your code with the help of error messages

What you did in this section



Error messages are your friends!



PART 4: SHOWCASE YOUR PROJECTS



1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Django project called “portfolio”

3. Django app called “projects”

4. urls.py file in your “projects” app and correct routing

5. double-templates folder setup

What you need to continue
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Seriously serious!



PREVIEW: Projects app
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Django ORM



Object-
Relational
Mapper



O  bject-
R  elational
M apper



Python
O  bject-
R  elational
M apper

SQL



A (very) short intro to Relational DBs
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class Project(models.Model):
    title = models.CharField(max_length=100)
    description = models.TextField()
    technology = models.CharField(max_length=20)
    image = models.FilePathField(path="/img")
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class Project(models.Model):
    title = models.CharField(max_length=100)
    description = models.TextField()
    technology = models.CharField(max_length=20)
    image = models.FilePathField(path="/img")



In our app...
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Migrations



Inside a SQLite file
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Django’s double-folder structure



projects/templates app2/templates app3/templates

templates

projects

app2

app3



projects/static app2/static app3/static

static

projects

app2

app3



static

img

app2

img
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img
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Django Templating Language



{% code logic %}



{{ variables }}



Adding data through the Django Shell



Error messages are your friends!



Debugging



Debugging



Debugging



Debugging



Debugging



Debugging



Changing Models and the DB



1) makemigrations



2) migrate



Changing Column Datatypes



Error messages are your friends!



Template Inheritance
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1. Created a Django Model

What you did in this section

class Project(models.Model):
    title = models.CharField(max_length=100)
    description = models.TextField()
    technology = models.CharField(max_length=20)
    image = models.CharField(max_length=100)



1. Learned about ORMs (Object-Relational Mappers)

What you did in this section

Python

ORM

SQL



1. Learned about ORMs (Object-Relational Mappers)

What you did in this section

class Project(models.Model):
    title = models.CharField(max_length=100)
    description = models.TextField()
    technology = models.CharField(max_length=20)
    image = models.CharField(max_length=100)



1. Learned about Relational Databases

What you did in this section

id title description technology image

1 test This is a test Django /img/t.png

2 daily Write words Django /img/d.png

3 todo What to do? Tkinter /img/td.png

Project table
Column

Row



1. Peeked into a Django Migrations file

2. Peeked into a SQLite Database File

What you did in this section



1. Revisited the nested 
template folder structure in Django

What you did in this section

templates

index.html

app2

index.html

projects

index.html

app3



1. Added static image files to your project

2. Linked those image files correctly

What you did in this section

{% load static %}



1. Used the Django Shell to create and edit data in your DB

What you did in this section

projects = Project.objects.all()
p1 = projects[0]
p1.image = "changed/path"
p1.save()



1. Created new URL paths

What you did in this section

portfolio.urls

projects.urlsinclude()

path()

views.py



1. Queried the DB from your views

2. Passed data on to your template files

What you did in this section

return render(request, "template.html", {"projects": projects})



1. Used Django Templating Syntax

What you did in this section

{% code logic %} {{ variables }}



1. Applied more Bootstrap styling

What you did in this section



1. Some serious debugging!!!

What you did in this section



PART 5 - DISPLAY A SINGLE PROJECT



1. Set up: Python 3.x, Virtual Environment, Django, text editor

2. Django project “portfolio” with app “projects”

3. Projects in the Database

4. Portfolio page listing all projects

What you need to continue
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Back into the Django Shell



What’s pk?



pk means “primary key”



pk means “primary key”

In our project: pk == id
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Capturing URL parts
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Capturing URL parts

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

< 1 >



Capturing URL parts

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1

< pk=1 >



Path converters - int:



What path converters do

urlpatterns = [
    path("<int:pk>", views.project_detail)
]
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What path converters do

http://localhost:8000/projects/gimmeprojects

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

http://localhost:8000/projects/1



Views: the code logic



Resolving URLs

http://localhost:8000/projects/1

def project_detail(request, pk):
    project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

urls.py



Resolving URLs

http://localhost:8000/projects/1

def project_detail(request, pk):
    project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

urls.py



Testing: Can we access a single resource?
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Linking two templates



NoReverseMatch



Giving names to patterns



Giving names to patterns

urlpatterns = [
    path("<int:pk>", views.project_detail)
]



Giving names to patterns

urlpatterns = [
    path("<int:pk>", views.project_detail)
]

<a href="{% url 'app_name:name' project.pk %}">Read More</a>
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<a href="{% url 'projects:name' project.pk %}">Read More</a>

Giving names to patterns
app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Giving names to patterns
app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Giving names to patterns
app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

Identifies Django view



NoReverseMatch (but a different one)



Passing arguments for retrieving URLs



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Passing arguments for retrieving URLs

your_template.html



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Passing arguments for retrieving URLs

your_template.html

http://localhost:8000/projects/1
Browser



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Passing arguments for retrieving URLs

your_template.html

http://localhost:8000/projects/1

def project_detail(request, pk):
    project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser



NoReverseMatch



Debugging



Check first in these places!

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py



Check first in these places!

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py



Check first in these places!

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

1) urls.py



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Check first in these places!

2) your_template.html



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Check first in these places!

2) your_template.html



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

NoReverseMatch Debugging 1: Identify view

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Check first in these places!

your_template.html



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Check first in these places!

your_template.html

http://localhost:8000/projects/1
Browser



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

Check first in these places!

your_template.html

http://localhost:8000/projects/1

def project_detail(request, pk):
    project = Project.objects.get(pk=pk)

return render(request,"projects/detail.html", {"projects": project})

views.py

Browser



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

NoReverseMatch Debugging 2: Pass arguments

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py



Debugging Summary



Debugging Summary



<a href="{% url 'projects:project_detail' project.pk %}">Read More</a>

NoReverseMatch Debugging Summary

app_name = "projects"

urlpatterns = [
    path("<int:pk>", views.project_detail, name="project_detail")
]

your_template.html

urls.py

1) Identify view

2) Pass arguments



1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT



DRY - don’t repeat yourself



File 1: base.html



{% block content %}
{% endblock %}

base.html



{% block content %}

{% endblock %}

base.html



{% block content %}

{% endblock %}

base.html



{% block content %}

<div>My HTML content</div>

{% endblock %}

base.html



File 2: your_template.html



{% extends ‘base.html’ %}

{% block content %}

{% endblock %}

your_template.html



{% extends ‘base.html’ %}

{% block content %}

{% endblock %}

your_template.html



{% extends ‘base.html’ %}

{% block content %}

<div>My HTML content</div>

{% endblock %}

your_template.html



In practice!
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4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
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PART 5 - DISPLAY A SINGLE PROJECT



Mobile responsive!

<meta name="viewport" content="width=device-width, initial-scale=1.0">



1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT



A convenient way of accessing your DB



Creating a superuser



Registering your models



1. About this section
2. Django ORM: Accessing a single project
3. Variable arguments from URLs: routing and views
4. URL linking: app_name, path names, and arguments
5. Template Inheritance
6. Some more styling
7. Using the Django Admin Interface
8. Recap and Congrats!
9. Next Steps

PART 5 - DISPLAY A SINGLE PROJECT



1. Using the Django ORM in the shell and in views.py

2. Learned about primary keys (pk)

What you did in this section



1. Lasso-ed parts from URLs using angle brackets < >

What you did in this section

http://localhost:8000/projects/1
<   >



1. Used an int: path converter to verify the URL path’s datatype

What you did in this section

http://localhost:8000/projects/gimmeprojects

http://localhost:8000/projects/1



1. Defining proper namespaces for linking and reverse URL matching

What you did in this section

<a href="{% url 'app_name:name' %}">Read More</a>

urls.py



1. Passing arguments inside of URL template tags

What you did in this section

<a href="{% url 'app_name:name' arg %}">Read More</a>

urls.py

path('<arg>', views.function_name, name='name')



1. Debugging NoReverseMatch Error

What you did in this section

● Identify view
● Pass arguments your_template.htmlurls.py



1. DRY - don’t repeat yourself

2. Template inheritance

What you did in this section

{% extends ‘base.html’ %}

{% block content %}
{% endblock %}



1. Bootstrap header

2. Make the site mobile responsive

What you did in this section

<meta name="viewport" content="width=device-width, initial-scale=1.0">



1. Create a superuser

2. Register your models in Django admin

3. Add/Edit/Delete DB entries conveniently

What you did in this section



CONGRATULATIONS!!



What you built





Share your knowledge with a Blog



Keep learning!


