CalculusWithJuliaNotes.jl/quarto/0e7f54ed/integrals/improper_integrals.html
2022-08-11 13:15:19 -04:00

1946 lines
189 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.0.32">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Calculus with Julia - 41&nbsp; Improper Integrals</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<link href="../integrals/mean_value_theorem.html" rel="next">
<link href="../integrals/partial_fractions.html" rel="prev">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "navbar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "end",
"type": "overlay",
"limit": 20,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit"
}
}</script>
<script async="" src="https://hypothes.is/embed.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" integrity="sha512-c3Nl8+7g4LMSTdrm621y7kf9v3SDPnhxLNhcjFJbKECVnmZHTdo+IRO05sNLTH/D3vA6u1X32ehoLC7WFVdheg==" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js" integrity="sha512-bLT0Qm9VnAYZDflyKcBaQ2gg0hSYNQrJ8RilYldYQ1FxQYoCLtUjuuRuZo+fjqhx/qtq/1itJ0C2ejDxltZVFg==" crossorigin="anonymous"></script>
<script type="application/javascript">define('jquery', [],function() {return window.jQuery;})</script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
</head>
<body class="nav-sidebar floating nav-fixed">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="navbar navbar-expand-lg navbar-dark ">
<div class="navbar-container container-fluid">
<a class="navbar-brand" href="../index.html">
<img src="../logo.png" alt="">
<span class="navbar-title">Calculus with Julia</span>
</a>
<div id="quarto-search" class="" title="Search"></div>
</div> <!-- /container-fluid -->
</nav>
<nav class="quarto-secondary-nav" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<div class="container-fluid d-flex justify-content-between">
<h1 class="quarto-secondary-nav-title"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">Improper Integrals</span></h1>
<button type="button" class="quarto-btn-toggle btn" aria-label="Show secondary navigation">
<i class="bi bi-chevron-right"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article page-navbar">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse sidebar-navigation floating overflow-auto">
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">Preface</a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">Precalculus Concepts</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/calculator.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">From calculator to computer</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/variables.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Variables</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/numbers_types.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Number systems</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/logical_expressions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">Inequalities, Logical expressions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">Vectors</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/ranges.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">Ranges and Sets</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">Functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">The Graph of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/transformations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">Function manipulations</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/inversefunctions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">The Inverse of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Polynomials</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial_roots.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">Roots of a polynomial</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomials_package.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">The Polynomials package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/rational_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">Rational functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/exp_log_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">Exponential and logarithmic functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/trig_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">Trigonometric functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/julia_overview.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">Overview of Julia commands</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">Limits</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">Limits</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits_extensions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">Limits, issues, extensions of the concept</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/continuity.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">Continuity</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/intermediate_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">Implications of continuity</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">Derivatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">Derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/numeric_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">Numeric derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/symbolic_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">Symbolic derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">The mean value theorem for differentiable functions.</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/optimization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">Optimization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/first_second_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">The first and second derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/curve_sketching.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">Curve Sketching</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/linearization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">Linearization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/newtons_method.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/more_zeros.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Derivative-free alternatives to Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/lhospitals_rule.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">LHospitals Rule</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/implicit_differentiation.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Implicit Differentiation</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/related_rates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Related rates</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/taylor_series_polynomials.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">Taylor Polynomials and other Approximating Polynomials</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">Integrals</a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">Area under a curve</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/ftc.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">Fundamental Theorem or Calculus</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/substitution.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">Substitution</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/integration_by_parts.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">Integration By Parts</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/partial_fractions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">Partial Fractions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/improper_integrals.html" class="sidebar-item-text sidebar-link active"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">Improper Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">Mean value theorem for integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area_between_curves.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">Area between two curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/center_of_mass.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">Center of Mass</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/volumes_slice.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">Volumes by slicing</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/arc_length.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">Arc length</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/surface_area.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">Surface Area</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">ODEs</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/odes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">ODEs</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/euler.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">Eulers method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/solve.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">50</span>&nbsp; <span class="chapter-title">The problem-algorithm-solve interface</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/differential_equations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">51</span>&nbsp; <span class="chapter-title">The <code>DifferentialEquations</code> suite</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">Differential vector calculus</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/polar_coordinates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">52</span>&nbsp; <span class="chapter-title">Polar Coordinates and Curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">53</span>&nbsp; <span class="chapter-title">Vectors and matrices</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_valued_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">54</span>&nbsp; <span class="chapter-title">Vector-valued functions, <span class="math inline">\(f:R \rightarrow R^n\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">55</span>&nbsp; <span class="chapter-title">Scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions_applications.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">56</span>&nbsp; <span class="chapter-title">Applications with scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_fields.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">57</span>&nbsp; <span class="chapter-title">Functions <span class="math inline">\(R^n \rightarrow R^m\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/plots_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">58</span>&nbsp; <span class="chapter-title">2D and 3D plots in Julia with Plots</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="false">Integral vector calculus</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/double_triple_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">59</span>&nbsp; <span class="chapter-title">Multi-dimensional integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/line_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">60</span>&nbsp; <span class="chapter-title">Line and Surface Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/div_grad_curl.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">61</span>&nbsp; <span class="chapter-title">The Gradient, Divergence, and Curl</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/stokes_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">62</span>&nbsp; <span class="chapter-title">Greens Theorem, Stokes Theorem, and the Divergence Theorem</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/review.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">63</span>&nbsp; <span class="chapter-title">Quick Review of Vector Calculus</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">Alternatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-8" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/plotly_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">64</span>&nbsp; <span class="chapter-title">JavaScript based plotting libraries</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/makie_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">65</span>&nbsp; <span class="chapter-title">Calculus plots with Makie</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">Appendices</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-9" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/getting_started_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">66</span>&nbsp; <span class="chapter-title">Getting started with Julia</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/julia_interfaces.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">67</span>&nbsp; <span class="chapter-title">Julia interfaces</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/calculus_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">68</span>&nbsp; <span class="chapter-title">The <code>CalculusWithJulia</code> package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/unicode.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">69</span>&nbsp; <span class="chapter-title">Usages of Unicode symbols</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/quick_notes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">70</span>&nbsp; <span class="chapter-title">Quick introduction to Calculus with Julia</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../references.html" class="sidebar-item-text sidebar-link">References</a>
</div>
</li>
</ul>
</div>
</nav>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#infinite-domains" id="toc-infinite-domains" class="nav-link active" data-scroll-target="#infinite-domains"> <span class="header-section-number">41.1</span> Infinite domains</a>
<ul class="collapse">
<li><a href="#numeric-integration" id="toc-numeric-integration" class="nav-link" data-scroll-target="#numeric-integration"> <span class="header-section-number">41.1.1</span> Numeric integration</a></li>
</ul></li>
<li><a href="#singularities" id="toc-singularities" class="nav-link" data-scroll-target="#singularities"> <span class="header-section-number">41.2</span> Singularities</a>
<ul class="collapse">
<li><a href="#numeric-integration-1" id="toc-numeric-integration-1" class="nav-link" data-scroll-target="#numeric-integration-1"> <span class="header-section-number">41.2.1</span> Numeric integration</a></li>
</ul></li>
<li><a href="#probability-applications" id="toc-probability-applications" class="nav-link" data-scroll-target="#probability-applications"> <span class="header-section-number">41.3</span> Probability applications</a></li>
<li><a href="#questions" id="toc-questions" class="nav-link" data-scroll-target="#questions"> <span class="header-section-number">41.4</span> Questions</a></li>
</ul>
<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/edit/main/quarto/integrals/improper_integrals.qmd" class="toc-action">Edit this page</a></p><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/issues/new" class="toc-action">Report an issue</a></p></div></div></nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title d-none d-lg-block"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">Improper Integrals</span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<p>This section uses these add-on packages:</p>
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">CalculusWithJulia</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">Plots</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">SymPy</span></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">QuadGK</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<hr>
<p>A function <span class="math inline">\(f(x)\)</span> is Riemann integrable over an interval <span class="math inline">\([a,b]\)</span> if some limit involving Riemann sums exists. This limit will fail to exist if <span class="math inline">\(f(x) = \infty\)</span> in <span class="math inline">\([a,b]\)</span>. As well, the Riemann sum idea is undefined if either <span class="math inline">\(a\)</span> or <span class="math inline">\(b\)</span> (or both) are infinite, so the limit wont exist in this case.</p>
<p>To define integrals with either functions having singularities or infinite domains, the idea of an improper integral is introduced with definitions to handle the two cases above.</p>
<div class="cell" data-cache="true" data-hold="true" data-execution_count="4">
<div class="cell-output cell-output-display" data-execution_count="5">
<div class="d-flex justify-content-center"> <figure class="figure"> <img src="" class="card-img-top figure-img" alt="A Figure">
<figcaption class="figure-caption"><div class="markdown"><p>Area under \(1/\sqrt{x}\) over \([a,b]\) increases as \(a\) gets closer to \(0\). Will it grow unbounded or have a limit?</p>
</div> </figcaption>
</figure>
</div>
</div>
</div>
<section id="infinite-domains" class="level2" data-number="41.1">
<h2 data-number="41.1" class="anchored" data-anchor-id="infinite-domains"><span class="header-section-number">41.1</span> Infinite domains</h2>
<p>Let <span class="math inline">\(f(x)\)</span> be a reasonable function, so reasonable that for any <span class="math inline">\(a &lt; b\)</span> the function is Riemann integrable, meaning <span class="math inline">\(\int_a^b f(x)dx\)</span> exists.</p>
<p>What needs to be the case so that we can discuss the integral over the entire real number line?</p>
<p>Clearly something. The function <span class="math inline">\(f(x) = 1\)</span> is reasonable by the idea above. Clearly the integral over and <span class="math inline">\([a,b]\)</span> is just <span class="math inline">\(b-a\)</span>, but the limit over an unbounded domain would be <span class="math inline">\(\infty\)</span>. Even though limits of infinity can be of interest in some cases, not so here. What will ensure that the area is finite over an infinite region?</p>
<p>Or is that even the right question. Now consider <span class="math inline">\(f(x) = \sin(\pi x)\)</span>. Over every interval of the type <span class="math inline">\([-2n, 2n]\)</span> the area is <span class="math inline">\(0\)</span>, and over any interval, <span class="math inline">\([a,b]\)</span> the area never gets bigger than <span class="math inline">\(2\)</span>. But still this function does not have a well defined area on an infinite domain.</p>
<p>The right question involves a limit. Fix a finite <span class="math inline">\(a\)</span>. We define the definite integral over <span class="math inline">\([a,\infty)\)</span> to be</p>
<p><span class="math display">\[
\int_a^\infty f(x) dx = \lim_{M \rightarrow \infty} \int_a^M f(x) dx,
\]</span></p>
<p>when the limit exists. Similarly, we define the definite integral over <span class="math inline">\((-\infty, a]\)</span> through</p>
<p><span class="math display">\[
\int_{-\infty}^a f(x) dx = \lim_{M \rightarrow -\infty} \int_M^a f(x) dx.
\]</span></p>
<p>For the interval <span class="math inline">\((-\infty, \infty)\)</span> we have need <em>both</em> these limits to exist, and then:</p>
<p><span class="math display">\[
\int_{-\infty}^\infty f(x) dx = \lim_{M \rightarrow -\infty} \int_M^a f(x) dx + \lim_{M \rightarrow \infty} \int_a^M f(x) dx.
\]</span></p>
<div class="callout-note callout callout-style-default callout-captioned">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-caption-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>When the integral exists, it is said to <em>converge</em>. If it doesnt exist, it is said to <em>diverge</em>.</p>
</div>
</div>
<section id="examples" class="level5">
<h5 class="anchored" data-anchor-id="examples">Examples</h5>
<ul>
<li>The function <span class="math inline">\(f(x) = 1/x^2\)</span> is integrable over <span class="math inline">\([1, \infty)\)</span>, as this limit exists:</li>
</ul>
<p><span class="math display">\[
\lim_{M \rightarrow \infty} \int_1^M \frac{1}{x^2}dx = \lim_{M \rightarrow \infty} -\frac{1}{x}\big|_1^M
= \lim_{M \rightarrow \infty} 1 - \frac{1}{M} = 1.
\]</span></p>
<ul>
<li>The function <span class="math inline">\(f(x) = 1/x^{1/2}\)</span> is not integrable over <span class="math inline">\([1, \infty)\)</span>, as this limit fails to exist:</li>
</ul>
<p><span class="math display">\[
\lim_{M \rightarrow \infty} \int_1^M \frac{1}{x^{1/2}}dx = \lim_{M \rightarrow \infty} \frac{x^{1/2}}{1/2}\big|_1^M
= \lim_{M \rightarrow \infty} 2\sqrt{M} - 2 = \infty.
\]</span></p>
<p>The limit is infinite, so does not exist except in an extended sense.</p>
<ul>
<li>The function <span class="math inline">\(x^n e^{-x}\)</span> for <span class="math inline">\(n = 1, 2, \dots\)</span> is integrable over <span class="math inline">\([0,\infty)\)</span>.</li>
</ul>
<p>Before showing this, we recall the fundamental theorem of calculus. The limit existing is the same as saying the limit of <span class="math inline">\(F(M) - F(a)\)</span> exists for an antiderivative of <span class="math inline">\(f(x)\)</span>.</p>
<p>For this particular problem, it can be shown by integration by parts that for positive, integer values of <span class="math inline">\(n\)</span> that an antiderivative exists of the form <span class="math inline">\(F(x) = p(x)e^{-x}\)</span>, where <span class="math inline">\(p(x)\)</span> is a polynomial of degree <span class="math inline">\(n\)</span>. But weve seen that for any <span class="math inline">\(n&gt;0\)</span>, <span class="math inline">\(\lim_{x \rightarrow \infty} x^n e^{-x} = 0\)</span>, so the same is true for any polynomial. So, <span class="math inline">\(\lim_{M \rightarrow \infty} F(M) - F(1) = -F(1)\)</span>.</p>
<ul>
<li>The function <span class="math inline">\(e^x\)</span> is integrable over <span class="math inline">\((-\infty, a]\)</span> but not</li>
</ul>
<p><span class="math display">\[
[a, \infty)
\]</span></p>
<p>for any finite <span class="math inline">\(a\)</span>. This is because, <span class="math inline">\(F(M) = e^x\)</span> and this has a limit as <span class="math inline">\(x\)</span> goes to <span class="math inline">\(-\infty\)</span>, but not <span class="math inline">\(\infty\)</span>.</p>
<ul>
<li><p>Let <span class="math inline">\(f(x) = x e^{-x^2}\)</span>. This function has an integral over <span class="math inline">\([0, \infty)\)</span> and more generally <span class="math inline">\((-\infty, \infty)\)</span>. To see, we note that as it is an odd function, the area from <span class="math inline">\(0\)</span> to <span class="math inline">\(M\)</span> is the opposite sign of that from <span class="math inline">\(-M\)</span> to <span class="math inline">\(0\)</span>. So <span class="math inline">\(\lim_{M \rightarrow \infty} (F(M) - F(0)) = \lim_{M \rightarrow -\infty} (F(0) - (-F(\lvert M\lvert)))\)</span>. We only then need to investigate the one limit. But we can see by substitution with <span class="math inline">\(u=x^2\)</span>, that an antiderivative is <span class="math inline">\(F(x) = (-1/2) \cdot e^{-x^2}\)</span>. Clearly, <span class="math inline">\(\lim_{M \rightarrow \infty}F(M) = 0\)</span>, so the answer is well defined, and the area from <span class="math inline">\(0\)</span> to <span class="math inline">\(\infty\)</span> is just <span class="math inline">\(e/2\)</span>. From <span class="math inline">\(-\infty\)</span> to <span class="math inline">\(0\)</span> it is <span class="math inline">\(-e/2\)</span> and the total area is <span class="math inline">\(0\)</span>, as the two sides “cancel” out.</p></li>
<li><p>Let <span class="math inline">\(f(x) = \sin(x)\)</span>. Even though <span class="math inline">\(\lim_{M \rightarrow \infty} (F(M) - F(-M) ) = 0\)</span>, this function is not integrable. The fact is we need <em>both</em> the limit <span class="math inline">\(F(M)\)</span> and <span class="math inline">\(F(-M)\)</span> to exist as <span class="math inline">\(M\)</span> goes to <span class="math inline">\(\infty\)</span>. In this case, even though the area cancels if <span class="math inline">\(\infty\)</span> is approached at the same rate, this isnt sufficient to guarantee the two limits exists independently.</p></li>
<li><p>Will the function <span class="math inline">\(f(x) = 1/(x\cdot(\log(x))^2)\)</span> have an integral over <span class="math inline">\([e, \infty)\)</span>?</p></li>
</ul>
<p>We first find an antiderivative using the <span class="math inline">\(u\)</span>-substitution <span class="math inline">\(u(x) = \log(x)\)</span>:</p>
<p><span class="math display">\[
\int_e^M \frac{e}{x \log(x)^{2}} dx
= \int_{\log(e)}^{\log(M)} \frac{1}{u^{2}} du
= \frac{-1}{u} \big|_{1}^{\log(M)}
= \frac{-1}{\log(M)} - \frac{-1}{1}
= 1 - \frac{1}{M}.
\]</span></p>
<p>As <span class="math inline">\(M\)</span> goes to <span class="math inline">\(\infty\)</span>, this will converge to <span class="math inline">\(1\)</span>.</p>
<ul>
<li>The sinc function <span class="math inline">\(f(x) = \sin(\pi x)/(\pi x)\)</span> does not have a nice antiderivative. Seeing if the limit exists is a bit of a problem. However, this function is important enough that there is a built-in function, <code>Si</code>, that computes <span class="math inline">\(\int_0^x \sin(u)/u\cdot du\)</span>. This function can be used through <code>sympy.Si(...)</code>:</li>
</ul>
<div class="cell" data-execution_count="5">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="pp">@syms</span> M</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">limit</span>(sympy.<span class="fu">Si</span>(M), M <span class="op">=&gt;</span> oo)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="6">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
\frac{\pi}{2}
\]
</span>
</div>
</div>
</section>
<section id="numeric-integration" class="level3" data-number="41.1.1">
<h3 data-number="41.1.1" class="anchored" data-anchor-id="numeric-integration"><span class="header-section-number">41.1.1</span> Numeric integration</h3>
<p>The <code>quadgk</code> function (available through <code>QuadGK</code>) is able to accept <code>Inf</code> and <code>-Inf</code> as endpoints of the interval. For example, this will integrate <span class="math inline">\(e^{-x^2/2}\)</span> over the real line:</p>
<div class="cell" data-execution_count="6">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(x) <span class="op">=</span> <span class="fu">exp</span>(<span class="op">-</span>x<span class="op">^</span><span class="fl">2</span><span class="op">/</span><span class="fl">2</span>)</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="fu">quadgk</span>(f, <span class="op">-</span><span class="cn">Inf</span>, <span class="cn">Inf</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="7">
<pre><code>(2.506628274639168, 3.608438072243189e-8)</code></pre>
</div>
</div>
<p>(If may not be obvious, but this is <span class="math inline">\(\sqrt{2\pi}\)</span>.)</p>
</section>
</section>
<section id="singularities" class="level2" data-number="41.2">
<h2 data-number="41.2" class="anchored" data-anchor-id="singularities"><span class="header-section-number">41.2</span> Singularities</h2>
<p>Suppose <span class="math inline">\(\lim_{x \rightarrow c}f(x) = \infty\)</span> or <span class="math inline">\(-\infty\)</span>. Then a Riemann sum that contains an interval including <span class="math inline">\(c\)</span> will not be finite if the point chosen in the interval is <span class="math inline">\(c\)</span>. Though we could choose another point, this is not enough as the definition must hold for any choice of the <span class="math inline">\(c_i\)</span>.</p>
<p>However, if <span class="math inline">\(c\)</span> is isolated, we can get close to <span class="math inline">\(c\)</span> and see how the area changes.</p>
<p>Suppose <span class="math inline">\(a &lt; c\)</span>, we define <span class="math inline">\(\int_a^c f(x) dx = \lim_{M \rightarrow c-} \int_a^c f(x) dx\)</span>. If this limit exists, the definite integral with <span class="math inline">\(c\)</span> is well defined. Similarly, the integral from <span class="math inline">\(c\)</span> to <span class="math inline">\(b\)</span>, where <span class="math inline">\(b &gt; c\)</span>, can be defined by a right limit going to <span class="math inline">\(c\)</span>. The integral from <span class="math inline">\(a\)</span> to <span class="math inline">\(b\)</span> will exist if both the limits are finite.</p>
<section id="examples-1" class="level5">
<h5 class="anchored" data-anchor-id="examples-1">Examples</h5>
<ul>
<li>Consider the example of the initial illustration, <span class="math inline">\(f(x) = 1/\sqrt{x}\)</span> at <span class="math inline">\(0\)</span>. Here <span class="math inline">\(f(0)= \infty\)</span>, so the usual notion of a limit wont apply to <span class="math inline">\(\int_0^1 f(x) dx\)</span>. However,</li>
</ul>
<p><span class="math display">\[
\lim_{M \rightarrow 0+} \int_M^1 \frac{1}{\sqrt{x}} dx
= \lim_{M \rightarrow 0+} \frac{\sqrt{x}}{1/2} \big|_M^1
= \lim_{M \rightarrow 0+} 2(1) - 2\sqrt{M} = 2.
\]</span></p>
<div class="callout-note callout callout-style-default callout-captioned">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-caption-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>The cases <span class="math inline">\(f(x) = x^{-n}\)</span> for <span class="math inline">\(n &gt; 0\)</span> are tricky to keep straight. For <span class="math inline">\(n &gt; 1\)</span>, the functions can be integrated over <span class="math inline">\([1,\infty)\)</span>, but not <span class="math inline">\((0,1]\)</span>. For <span class="math inline">\(0 &lt; n &lt; 1\)</span>, the functions can be integrated over <span class="math inline">\((0,1]\)</span> but not <span class="math inline">\([1, \infty)\)</span>.</p>
</div>
</div>
<ul>
<li>Now consider <span class="math inline">\(f(x) = 1/x\)</span>. Is this integral <span class="math inline">\(\int_0^1 1/x \cdot dx\)</span> defined? It will be <em>if</em> this limit exists:</li>
</ul>
<p><span class="math display">\[
\lim_{M \rightarrow 0+} \int_M^1 \frac{1}{x} dx
= \lim_{M \rightarrow 0+} \log(x) \big|_M^1
= \lim_{M \rightarrow 0+} \log(1) - \log(M) = \infty.
\]</span></p>
<p>As the limit does not exist, the function is not integrable around <span class="math inline">\(0\)</span>.</p>
<ul>
<li><code>SymPy</code> may give answers which do not coincide with our definitions, as it uses complex numbers as a default assumption. In this case it returns the proper answer when integrated from <span class="math inline">\(0\)</span> to <span class="math inline">\(1\)</span> and <code>NaN</code> for an integral over <span class="math inline">\((-1,1)\)</span>:</li>
</ul>
<div class="cell" data-execution_count="7">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="pp">@syms</span> x</span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">integrate</span>(<span class="fl">1</span><span class="op">/</span>x, (x, <span class="fl">0</span>, <span class="fl">1</span>)), <span class="fu">integrate</span>(<span class="fl">1</span><span class="op">/</span>x, (x, <span class="op">-</span><span class="fl">1</span>, <span class="fl">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="8">
<pre><code>(oo, nan)</code></pre>
</div>
</div>
<ul>
<li>Suppose you know <span class="math inline">\(\int_1^\infty x^2 f(x) dx\)</span> exists. Does this imply <span class="math inline">\(\int_0^1 f(1/x) dx\)</span> exists?</li>
</ul>
<p>We need to consider the limit of <span class="math inline">\(\int_M^1 f(1/x) dx\)</span>. We try the <span class="math inline">\(u\)</span>-substitution <span class="math inline">\(u(x) = 1/x\)</span>. This gives <span class="math inline">\(du = -(1/x^2)dx = -u^2 dx\)</span>. So, the substitution becomes:</p>
<p><span class="math display">\[
\int_M^1 f(1/x) dx = \int_{1/M}^{1/1} f(u) (-u^2) du = \int_1^{1/M} u^2 f(u) du.
\]</span></p>
<p>But the limit as <span class="math inline">\(M \rightarrow 0\)</span> of <span class="math inline">\(1/M\)</span> is the same going to <span class="math inline">\(\infty\)</span>, so the right side will converge by the assumption. Thus we get <span class="math inline">\(f(1/x)\)</span> is integrable over <span class="math inline">\((0,1]\)</span>.</p>
</section>
<section id="numeric-integration-1" class="level3" data-number="41.2.1">
<h3 data-number="41.2.1" class="anchored" data-anchor-id="numeric-integration-1"><span class="header-section-number">41.2.1</span> Numeric integration</h3>
<p>So far our use of the <code>quadgk</code> function specified the region to integrate via <code>a</code>, <code>b</code>, as in <code>quadgk(f, a, b)</code>. In fact, it can specify values in between for which the function should not be sampled. For example, were we to integrate <span class="math inline">\(1/\sqrt{\lvert x\rvert}\)</span> over <span class="math inline">\([-1,1]\)</span>, we would want to avoid <span class="math inline">\(0\)</span> as a point to sample. Here is how:</p>
<div class="cell" data-hold="true" data-execution_count="8">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(x) <span class="op">=</span> <span class="fl">1</span> <span class="op">/</span> <span class="fu">sqrt</span>(<span class="fu">abs</span>(x))</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="fu">quadgk</span>(f, <span class="op">-</span><span class="fl">1</span>, <span class="fl">0</span>, <span class="fl">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="9">
<pre><code>(3.999999962817228, 5.736423067171012e-8)</code></pre>
</div>
</div>
<p>Just trying <code>quadgk(f, -1, 1)</code> leads to a <code>DomainError</code>, as <code>0</code> will be one of the points sampled. The general call is like <code>quadgk(f, a, b, c, d,...)</code> which integrates over <span class="math inline">\((a,b)\)</span> and <span class="math inline">\((b,c)\)</span> and <span class="math inline">\((c,d)\)</span>, <span class="math inline">\(\dots\)</span>. The algorithm is not supposed to evaluate the function at the endpoints of the intervals.</p>
</section>
</section>
<section id="probability-applications" class="level2" data-number="41.3">
<h2 data-number="41.3" class="anchored" data-anchor-id="probability-applications"><span class="header-section-number">41.3</span> Probability applications</h2>
<p>A probability density is a function <span class="math inline">\(f(x) \geq 0\)</span> which is integrable on <span class="math inline">\((-\infty, \infty)\)</span> and for which <span class="math inline">\(\int_{-\infty}^\infty f(x) dx =1\)</span>. The cumulative distribution function is defined by <span class="math inline">\(F(x)=\int_{-\infty}^x f(u) du\)</span>.</p>
<p>Probability densities are good example of using improper integrals.</p>
<ul>
<li>Show that <span class="math inline">\(f(x) = (1/\pi) (1/(1 + x^2))\)</span> is a probability density function.</li>
</ul>
<p>We need to show that the integral exists and is <span class="math inline">\(1\)</span>. For this, we use the fact that <span class="math inline">\((1/\pi) \cdot \tan^{-1}(x)\)</span> is an antiderivative. Then we have:</p>
<p><span class="math display">\[
\lim_{M \rightarrow \infty} F(M) = (1/\pi) \cdot \pi/2
\]</span></p>
<p>and as <span class="math inline">\(\tan^{-1}(x)\)</span> is odd, we must have <span class="math inline">\(F(-\infty) = \lim_{M \rightarrow -\infty} f(M) = -(1/\pi) \cdot \pi/2\)</span>. All told, <span class="math inline">\(F(\infty) - F(-\infty) = 1/2 - (-1/2) = 1\)</span>.</p>
<ul>
<li>Show that <span class="math inline">\(f(x) = 1/(b-a)\)</span> for <span class="math inline">\(a \leq x \leq b\)</span> and <span class="math inline">\(0\)</span> otherwise is a probability density.</li>
</ul>
<p>The integral for <span class="math inline">\(-\infty\)</span> to <span class="math inline">\(a\)</span> of <span class="math inline">\(f(x)\)</span> is just an integral of the constant <span class="math inline">\(0\)</span>, so will be <span class="math inline">\(0\)</span>. (This is the only constant with finite area over an infinite domain.) Similarly, the integral from <span class="math inline">\(b\)</span> to <span class="math inline">\(\infty\)</span> will be <span class="math inline">\(0\)</span>. This means:</p>
<p><span class="math display">\[
\int_{-\infty}^\infty f(x) dx = \int_a^b \frac{1}{b-a} dx = 1.
\]</span></p>
<p>(One might also comment that <span class="math inline">\(f\)</span> is Riemann integrable on any <span class="math inline">\([0,M]\)</span> despite being discontinuous at <span class="math inline">\(a\)</span> and <span class="math inline">\(b\)</span>.)</p>
<ul>
<li>Show that if <span class="math inline">\(f(x)\)</span> is a probability density then so is <span class="math inline">\(f(x-c)\)</span> for any <span class="math inline">\(c\)</span>.</li>
</ul>
<p>We have by the <span class="math inline">\(u\)</span>-substitution</p>
<p><span class="math display">\[
\int_{-\infty}^\infty f(x-c)dx = \int_{u(-\infty)}^{u(\infty)} f(u) du = \int_{-\infty}^\infty f(u) du = 1.
\]</span></p>
<p>The key is that we can use the regular <span class="math inline">\(u\)</span>-substitution formula provided <span class="math inline">\(\lim_{M \rightarrow \infty} u(M) = u(\infty)\)</span> is defined. (The <em>informal</em> notation <span class="math inline">\(u(\infty)\)</span> is defined by that limit.)</p>
<ul>
<li>If <span class="math inline">\(f(x)\)</span> is a probability density, then so is <span class="math inline">\((1/h) f((x-c)/h)\)</span> for any <span class="math inline">\(c, h &gt; 0\)</span>.</li>
</ul>
<p>Again, by a <span class="math inline">\(u\)</span> substitution with, now, <span class="math inline">\(u(x) = (x-c)/h\)</span>, we have <span class="math inline">\(du = (1/h) \cdot dx\)</span> and the result follows just as before:</p>
<p><span class="math display">\[
\int_{-\infty}^\infty \frac{1}{h}f(\frac{x-c}{h})dx = \int_{u(-\infty)}^{u(\infty)} f(u) du = \int_{-\infty}^\infty f(u) du = 1.
\]</span></p>
<ul>
<li>If <span class="math inline">\(F(x) = 1 - e^{-x}\)</span>, for <span class="math inline">\(x \geq 0\)</span>, and <span class="math inline">\(0\)</span> otherwise, find <span class="math inline">\(f(x)\)</span>.</li>
</ul>
<p>We want to just say <span class="math inline">\(F'(x)= e^{-x}\)</span> so <span class="math inline">\(f(x) = e^{-x}\)</span>. But some care is needed. First, that isnt right. The derivative for <span class="math inline">\(x&lt;0\)</span> of <span class="math inline">\(F(x)\)</span> is <span class="math inline">\(0\)</span>, so <span class="math inline">\(f(x) = 0\)</span> if <span class="math inline">\(x &lt; 0\)</span>. What about for <span class="math inline">\(x&gt;0\)</span>? The derivative is <span class="math inline">\(e^{-x}\)</span>, but is that the right answer? <span class="math inline">\(F(x) = \int_{-\infty}^x f(u) du\)</span>, so we have to at least discuss if the <span class="math inline">\(-\infty\)</span> affects things. In this case, and in general the answer is <em>no</em>. For any <span class="math inline">\(x\)</span> we can find <span class="math inline">\(M &lt; x\)</span> so that we have <span class="math inline">\(F(x) = \int_{-\infty}^M f(u) du + \int_M^x f(u) du\)</span>. The first part is a constant, so will have derivative <span class="math inline">\(0\)</span>, the second will have derivative <span class="math inline">\(f(x)\)</span>, if the derivative exists (and it will exist at <span class="math inline">\(x\)</span> if the derivative is continuous in a neighborhood of <span class="math inline">\(x\)</span>).</p>
<p>Finally, at <span class="math inline">\(x=0\)</span> we have an issue, as <span class="math inline">\(F'(0)\)</span> does not exist. The left limit of the secant line approximation is <span class="math inline">\(0\)</span>, the right limit of the secant line approximation is <span class="math inline">\(1\)</span>. So, we can take <span class="math inline">\(f(x) = e^{-x}\)</span> for <span class="math inline">\(x &gt; 0\)</span> and <span class="math inline">\(0\)</span> otherwise, noting that redefining <span class="math inline">\(f(x)\)</span> at a point will not effect the integral as long as the point is finite.</p>
</section>
<section id="questions" class="level2" data-number="41.4">
<h2 data-number="41.4" class="anchored" data-anchor-id="questions"><span class="header-section-number">41.4</span> Questions</h2>
<section id="question" class="level6">
<h6 class="anchored" data-anchor-id="question">Question</h6>
<p>Is <span class="math inline">\(f(x) = 1/x^{100}\)</span> integrable around <span class="math inline">\(0\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="9">
<div class="cell-output cell-output-display" data-execution_count="10">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="13835909680318883433" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_13835909680318883433">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_13835909680318883433_1">
<input class="form-check-input" type="radio" name="radio_13835909680318883433" id="radio_13835909680318883433_1" value="1">
<span class="label-body px-1">
Yes
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_13835909680318883433_2">
<input class="form-check-input" type="radio" name="radio_13835909680318883433" id="radio_13835909680318883433_2" value="2">
<span class="label-body px-1">
No
</span>
</label>
</div>
</div>
</div>
<div id="13835909680318883433_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_13835909680318883433"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('13835909680318883433_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_13835909680318883433")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_13835909680318883433")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-1" class="level6">
<h6 class="anchored" data-anchor-id="question-1">Question</h6>
<p>Is <span class="math inline">\(f(x) = 1/x^{1/3}\)</span> integrable around <span class="math inline">\(0\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="10">
<div class="cell-output cell-output-display" data-execution_count="11">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="6099729258384583292" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_6099729258384583292">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_6099729258384583292_1">
<input class="form-check-input" type="radio" name="radio_6099729258384583292" id="radio_6099729258384583292_1" value="1">
<span class="label-body px-1">
Yes
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_6099729258384583292_2">
<input class="form-check-input" type="radio" name="radio_6099729258384583292" id="radio_6099729258384583292_2" value="2">
<span class="label-body px-1">
No
</span>
</label>
</div>
</div>
</div>
<div id="6099729258384583292_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_6099729258384583292"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 1;
var msgBox = document.getElementById('6099729258384583292_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_6099729258384583292")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_6099729258384583292")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-2" class="level6">
<h6 class="anchored" data-anchor-id="question-2">Question</h6>
<p>Is <span class="math inline">\(f(x) = x\cdot\log(x)\)</span> integrable on <span class="math inline">\([1,\infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="11">
<div class="cell-output cell-output-display" data-execution_count="12">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="9048565589177736885" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_9048565589177736885">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_9048565589177736885_1">
<input class="form-check-input" type="radio" name="radio_9048565589177736885" id="radio_9048565589177736885_1" value="1">
<span class="label-body px-1">
Yes
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_9048565589177736885_2">
<input class="form-check-input" type="radio" name="radio_9048565589177736885" id="radio_9048565589177736885_2" value="2">
<span class="label-body px-1">
No
</span>
</label>
</div>
</div>
</div>
<div id="9048565589177736885_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_9048565589177736885"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('9048565589177736885_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_9048565589177736885")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_9048565589177736885")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-3" class="level6">
<h6 class="anchored" data-anchor-id="question-3">Question</h6>
<p>Is <span class="math inline">\(f(x) = \log(x)/ x\)</span> integrable on <span class="math inline">\([1,\infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="12">
<div class="cell-output cell-output-display" data-execution_count="13">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="10259051259194643533" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_10259051259194643533">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_10259051259194643533_1">
<input class="form-check-input" type="radio" name="radio_10259051259194643533" id="radio_10259051259194643533_1" value="1">
<span class="label-body px-1">
Yes
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_10259051259194643533_2">
<input class="form-check-input" type="radio" name="radio_10259051259194643533" id="radio_10259051259194643533_2" value="2">
<span class="label-body px-1">
No
</span>
</label>
</div>
</div>
</div>
<div id="10259051259194643533_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_10259051259194643533"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('10259051259194643533_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_10259051259194643533")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_10259051259194643533")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-4" class="level6">
<h6 class="anchored" data-anchor-id="question-4">Question</h6>
<p>Is <span class="math inline">\(f(x) = \log(x)\)</span> integrable on <span class="math inline">\([1,\infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="13">
<div class="cell-output cell-output-display" data-execution_count="14">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="10140134411173477490" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_10140134411173477490">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_10140134411173477490_1">
<input class="form-check-input" type="radio" name="radio_10140134411173477490" id="radio_10140134411173477490_1" value="1">
<span class="label-body px-1">
Yes
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_10140134411173477490_2">
<input class="form-check-input" type="radio" name="radio_10140134411173477490" id="radio_10140134411173477490_2" value="2">
<span class="label-body px-1">
No
</span>
</label>
</div>
</div>
</div>
<div id="10140134411173477490_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_10140134411173477490"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('10140134411173477490_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_10140134411173477490")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_10140134411173477490")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-5" class="level6">
<h6 class="anchored" data-anchor-id="question-5">Question</h6>
<p>Compute the integral <span class="math inline">\(\int_0^\infty 1/(1+x^2) dx\)</span>.</p>
<div class="cell" data-hold="true" data-execution_count="14">
<div class="cell-output cell-output-display" data-execution_count="15">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="3794332535085400925" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_3794332535085400925">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="3794332535085400925" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="3794332535085400925_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("3794332535085400925").addEventListener("change", function() {
var correct = (Math.abs(this.value - 1.5707963267948966) <= 0.001);
var msgBox = document.getElementById('3794332535085400925_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_3794332535085400925")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_3794332535085400925")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="question-6" class="level6">
<h6 class="anchored" data-anchor-id="question-6">Question</h6>
<p>Compute the the integral <span class="math inline">\(\int_1^\infty \log(x)/x^2 dx\)</span>.</p>
<div class="cell" data-hold="true" data-execution_count="15">
<div class="cell-output cell-output-display" data-execution_count="16">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="8631769312420384190" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_8631769312420384190">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="8631769312420384190" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="8631769312420384190_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("8631769312420384190").addEventListener("change", function() {
var correct = (Math.abs(this.value - 0.999999998385741) <= 0.001);
var msgBox = document.getElementById('8631769312420384190_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_8631769312420384190")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_8631769312420384190")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="question-7" class="level6">
<h6 class="anchored" data-anchor-id="question-7">Question</h6>
<p>Compute the integral <span class="math inline">\(\int_0^2 (x-1)^{2/3} dx\)</span>.</p>
<div class="cell" data-hold="true" data-execution_count="16">
<div class="cell-output cell-output-display" data-execution_count="17">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="14099481710229385942" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_14099481710229385942">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="14099481710229385942" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="14099481710229385942_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("14099481710229385942").addEventListener("change", function() {
var correct = (Math.abs(this.value - 1.2000000004723115) <= 0.001);
var msgBox = document.getElementById('14099481710229385942_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_14099481710229385942")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_14099481710229385942")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="question-8" class="level6">
<h6 class="anchored" data-anchor-id="question-8">Question</h6>
<p>From the relationship that if <span class="math inline">\(0 \leq f(x) \leq g(x)\)</span> then <span class="math inline">\(\int_a^b f(x) dx \leq \int_a^b g(x) dx\)</span> it can be deduced that</p>
<ul>
<li>if <span class="math inline">\(\int_a^\infty f(x) dx\)</span> diverges, then so does <span class="math inline">\(\int_a^\infty g(x) dx\)</span>.</li>
<li>if <span class="math inline">\(\int_a^\infty g(x) dx\)</span> converges, then so does <span class="math inline">\(\int_a^\infty f(x) dx\)</span>.</li>
</ul>
<p>Let <span class="math inline">\(f(x) = \lvert \sin(x)/x^2 \rvert\)</span>.</p>
<p>What can you say about <span class="math inline">\(\int_1^\infty f(x) dx\)</span>, as <span class="math inline">\(f(x) \leq 1/x^2\)</span> on <span class="math inline">\([1, \infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="17">
<div class="cell-output cell-output-display" data-execution_count="18">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="2748116686296337231" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_2748116686296337231">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_2748116686296337231_1">
<input class="form-check-input" type="radio" name="radio_2748116686296337231" id="radio_2748116686296337231_1" value="1">
<span class="label-body px-1">
It is convergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_2748116686296337231_2">
<input class="form-check-input" type="radio" name="radio_2748116686296337231" id="radio_2748116686296337231_2" value="2">
<span class="label-body px-1">
It is divergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_2748116686296337231_3">
<input class="form-check-input" type="radio" name="radio_2748116686296337231" id="radio_2748116686296337231_3" value="3">
<span class="label-body px-1">
Can't say
</span>
</label>
</div>
</div>
</div>
<div id="2748116686296337231_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_2748116686296337231"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 1;
var msgBox = document.getElementById('2748116686296337231_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_2748116686296337231")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_2748116686296337231")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
<hr>
<p>Let <span class="math inline">\(f(x) = \lvert \sin(x) \rvert / x\)</span>.</p>
<p>What can you say about <span class="math inline">\(\int_1^\infty f(x) dx\)</span>, as <span class="math inline">\(f(x) \leq 1/x\)</span> on <span class="math inline">\([1, \infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="18">
<div class="cell-output cell-output-display" data-execution_count="19">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="10586838793303528513" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_10586838793303528513">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_10586838793303528513_1">
<input class="form-check-input" type="radio" name="radio_10586838793303528513" id="radio_10586838793303528513_1" value="1">
<span class="label-body px-1">
It is convergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_10586838793303528513_2">
<input class="form-check-input" type="radio" name="radio_10586838793303528513" id="radio_10586838793303528513_2" value="2">
<span class="label-body px-1">
It is divergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_10586838793303528513_3">
<input class="form-check-input" type="radio" name="radio_10586838793303528513" id="radio_10586838793303528513_3" value="3">
<span class="label-body px-1">
Can't say
</span>
</label>
</div>
</div>
</div>
<div id="10586838793303528513_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_10586838793303528513"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 3;
var msgBox = document.getElementById('10586838793303528513_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_10586838793303528513")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_10586838793303528513")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
<hr>
<p>Let <span class="math inline">\(f(x) = 1/\sqrt{x^2 - 1}\)</span>. What can you say about <span class="math inline">\(\int_1^\infty f(x) dx\)</span>, as <span class="math inline">\(f(x) \geq 1/x\)</span> on <span class="math inline">\([1, \infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="19">
<div class="cell-output cell-output-display" data-execution_count="20">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="17874397323483167649" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_17874397323483167649">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_17874397323483167649_1">
<input class="form-check-input" type="radio" name="radio_17874397323483167649" id="radio_17874397323483167649_1" value="1">
<span class="label-body px-1">
It is convergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_17874397323483167649_2">
<input class="form-check-input" type="radio" name="radio_17874397323483167649" id="radio_17874397323483167649_2" value="2">
<span class="label-body px-1">
It is divergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_17874397323483167649_3">
<input class="form-check-input" type="radio" name="radio_17874397323483167649" id="radio_17874397323483167649_3" value="3">
<span class="label-body px-1">
Can't say
</span>
</label>
</div>
</div>
</div>
<div id="17874397323483167649_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_17874397323483167649"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('17874397323483167649_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_17874397323483167649")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_17874397323483167649")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
<hr>
<p>Let <span class="math inline">\(f(x) = 1 + 4x^2\)</span>. What can you say about <span class="math inline">\(\int_1^\infty f(x) dx\)</span>, as <span class="math inline">\(f(x) \leq 1/x^2\)</span> on <span class="math inline">\([1, \infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="20">
<div class="cell-output cell-output-display" data-execution_count="21">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="11890380834893891107" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_11890380834893891107">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_11890380834893891107_1">
<input class="form-check-input" type="radio" name="radio_11890380834893891107" id="radio_11890380834893891107_1" value="1">
<span class="label-body px-1">
It is convergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_11890380834893891107_2">
<input class="form-check-input" type="radio" name="radio_11890380834893891107" id="radio_11890380834893891107_2" value="2">
<span class="label-body px-1">
It is divergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_11890380834893891107_3">
<input class="form-check-input" type="radio" name="radio_11890380834893891107" id="radio_11890380834893891107_3" value="3">
<span class="label-body px-1">
Can't say
</span>
</label>
</div>
</div>
</div>
<div id="11890380834893891107_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_11890380834893891107"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('11890380834893891107_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_11890380834893891107")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_11890380834893891107")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
<hr>
<p>Let <span class="math inline">\(f(x) = \lvert \sin(x)^{10}\rvert/e^x\)</span>. What can you say about <span class="math inline">\(\int_1^\infty f(x) dx\)</span>, as <span class="math inline">\(f(x) \leq e^{-x}\)</span> on <span class="math inline">\([1, \infty)\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="21">
<div class="cell-output cell-output-display" data-execution_count="22">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="15544107282915800719" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_15544107282915800719">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_15544107282915800719_1">
<input class="form-check-input" type="radio" name="radio_15544107282915800719" id="radio_15544107282915800719_1" value="1">
<span class="label-body px-1">
It is convergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_15544107282915800719_2">
<input class="form-check-input" type="radio" name="radio_15544107282915800719" id="radio_15544107282915800719_2" value="2">
<span class="label-body px-1">
It is divergent
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_15544107282915800719_3">
<input class="form-check-input" type="radio" name="radio_15544107282915800719" id="radio_15544107282915800719_3" value="3">
<span class="label-body px-1">
Can't say
</span>
</label>
</div>
</div>
</div>
<div id="15544107282915800719_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_15544107282915800719"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 1;
var msgBox = document.getElementById('15544107282915800719_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_15544107282915800719")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_15544107282915800719")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-9" class="level6">
<h6 class="anchored" data-anchor-id="question-9">Question</h6>
<p>The difference between “blowing up” at <span class="math inline">\(0\)</span> versus being integrable at <span class="math inline">\(\infty\)</span> can be seen to be related through the <span class="math inline">\(u\)</span>-substitution <span class="math inline">\(u=1/x\)</span>. With this <span class="math inline">\(u\)</span>-substitution, what becomes of <span class="math inline">\(\int_0^1 x^{-2/3} dx\)</span>?</p>
<div class="cell" data-hold="true" data-execution_count="22">
<div class="cell-output cell-output-display" data-execution_count="23">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="14639808955046759817" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_14639808955046759817">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_14639808955046759817_1">
<input class="form-check-input" type="radio" name="radio_14639808955046759817" id="radio_14639808955046759817_1" value="1">
<span class="label-body px-1">
\(\int_1^\infty u^{2/3}/u^2 \cdot du\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_14639808955046759817_2">
<input class="form-check-input" type="radio" name="radio_14639808955046759817" id="radio_14639808955046759817_2" value="2">
<span class="label-body px-1">
\(\int_0^\infty 1/u \cdot du\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_14639808955046759817_3">
<input class="form-check-input" type="radio" name="radio_14639808955046759817" id="radio_14639808955046759817_3" value="3">
<span class="label-body px-1">
\(\int_0^1 u^{2/3} \cdot du\)
</span>
</label>
</div>
</div>
</div>
<div id="14639808955046759817_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_14639808955046759817"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 1;
var msgBox = document.getElementById('14639808955046759817_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_14639808955046759817")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_14639808955046759817")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="question-10" class="level6">
<h6 class="anchored" data-anchor-id="question-10">Question</h6>
<p>The antiderivative of <span class="math inline">\(f(x) = 1/\pi \cdot 1/\sqrt{x(1-x)}\)</span> is <span class="math inline">\(F(x)=(2/\pi)\cdot \sin^{-1}(\sqrt{x})\)</span>.</p>
<p>Find <span class="math inline">\(\int_0^1 f(x) dx\)</span>.</p>
<div class="cell" data-hold="true" data-execution_count="23">
<div class="cell-output cell-output-display" data-execution_count="24">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="12865991861837681546" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_12865991861837681546">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="12865991861837681546" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="12865991861837681546_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("12865991861837681546").addEventListener("change", function() {
var correct = (Math.abs(this.value - 0.9999999921866226) <= 0.001);
var msgBox = document.getElementById('12865991861837681546_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_12865991861837681546")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_12865991861837681546")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
setTimeout(function() {
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
let href = ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const cites = ref.parentNode.getAttribute('data-cites').split(' ');
tippyHover(ref, function() {
var popup = window.document.createElement('div');
cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// target, if specified
link.setAttribute("target", "_blank");
}
}
});
</script>
<nav class="page-navigation">
<div class="nav-page nav-page-previous">
<a href="../integrals/partial_fractions.html" class="pagination-link">
<i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">Partial Fractions</span></span>
</a>
</div>
<div class="nav-page nav-page-next">
<a href="../integrals/mean_value_theorem.html" class="pagination-link">
<span class="nav-page-text"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">Mean value theorem for integrals</span></span> <i class="bi bi-arrow-right-short"></i>
</a>
</div>
</nav>
</div> <!-- /content -->
<footer class="footer">
<div class="nav-footer">
<div class="nav-footer-center">Copyright 2022, John Verzani</div>
</div>
</footer>
</body></html>