CalculusWithJuliaNotes.jl/quarto/0e7f54ed/integral_vector_calculus/review.html
2022-08-11 13:15:19 -04:00

1004 lines
70 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.0.32">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Calculus with Julia - 63&nbsp; Quick Review of Vector Calculus</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<link href="../alternatives/plotly_plotting.html" rel="next">
<link href="../integral_vector_calculus/stokes_theorem.html" rel="prev">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "navbar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "end",
"type": "overlay",
"limit": 20,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit"
}
}</script>
<script async="" src="https://hypothes.is/embed.js"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
</head>
<body class="nav-sidebar floating nav-fixed">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="navbar navbar-expand-lg navbar-dark ">
<div class="navbar-container container-fluid">
<a class="navbar-brand" href="../index.html">
<img src="../logo.png" alt="">
<span class="navbar-title">Calculus with Julia</span>
</a>
<div id="quarto-search" class="" title="Search"></div>
</div> <!-- /container-fluid -->
</nav>
<nav class="quarto-secondary-nav" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<div class="container-fluid d-flex justify-content-between">
<h1 class="quarto-secondary-nav-title"><span class="chapter-number">63</span>&nbsp; <span class="chapter-title">Quick Review of Vector Calculus</span></h1>
<button type="button" class="quarto-btn-toggle btn" aria-label="Show secondary navigation">
<i class="bi bi-chevron-right"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article page-navbar">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse sidebar-navigation floating overflow-auto">
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">Preface</a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">Precalculus Concepts</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/calculator.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">From calculator to computer</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/variables.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Variables</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/numbers_types.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Number systems</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/logical_expressions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">Inequalities, Logical expressions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">Vectors</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/ranges.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">Ranges and Sets</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">Functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">The Graph of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/transformations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">Function manipulations</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/inversefunctions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">The Inverse of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Polynomials</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial_roots.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">Roots of a polynomial</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomials_package.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">The Polynomials package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/rational_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">Rational functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/exp_log_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">Exponential and logarithmic functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/trig_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">Trigonometric functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/julia_overview.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">Overview of Julia commands</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">Limits</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">Limits</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits_extensions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">Limits, issues, extensions of the concept</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/continuity.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">Continuity</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/intermediate_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">Implications of continuity</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">Derivatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">Derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/numeric_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">Numeric derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/symbolic_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">Symbolic derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">The mean value theorem for differentiable functions.</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/optimization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">Optimization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/first_second_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">The first and second derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/curve_sketching.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">Curve Sketching</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/linearization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">Linearization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/newtons_method.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/more_zeros.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Derivative-free alternatives to Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/lhospitals_rule.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">LHospitals Rule</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/implicit_differentiation.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Implicit Differentiation</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/related_rates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Related rates</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/taylor_series_polynomials.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">Taylor Polynomials and other Approximating Polynomials</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="false">Integrals</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">Area under a curve</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/ftc.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">Fundamental Theorem or Calculus</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/substitution.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">Substitution</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/integration_by_parts.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">Integration By Parts</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/partial_fractions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">Partial Fractions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/improper_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">Improper Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">Mean value theorem for integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area_between_curves.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">Area between two curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/center_of_mass.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">Center of Mass</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/volumes_slice.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">Volumes by slicing</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/arc_length.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">Arc length</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/surface_area.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">Surface Area</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">ODEs</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/odes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">ODEs</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/euler.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">Eulers method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/solve.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">50</span>&nbsp; <span class="chapter-title">The problem-algorithm-solve interface</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/differential_equations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">51</span>&nbsp; <span class="chapter-title">The <code>DifferentialEquations</code> suite</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">Differential vector calculus</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/polar_coordinates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">52</span>&nbsp; <span class="chapter-title">Polar Coordinates and Curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">53</span>&nbsp; <span class="chapter-title">Vectors and matrices</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_valued_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">54</span>&nbsp; <span class="chapter-title">Vector-valued functions, <span class="math inline">\(f:R \rightarrow R^n\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">55</span>&nbsp; <span class="chapter-title">Scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions_applications.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">56</span>&nbsp; <span class="chapter-title">Applications with scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_fields.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">57</span>&nbsp; <span class="chapter-title">Functions <span class="math inline">\(R^n \rightarrow R^m\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/plots_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">58</span>&nbsp; <span class="chapter-title">2D and 3D plots in Julia with Plots</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="true">Integral vector calculus</a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="true">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/double_triple_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">59</span>&nbsp; <span class="chapter-title">Multi-dimensional integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/line_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">60</span>&nbsp; <span class="chapter-title">Line and Surface Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/div_grad_curl.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">61</span>&nbsp; <span class="chapter-title">The Gradient, Divergence, and Curl</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/stokes_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">62</span>&nbsp; <span class="chapter-title">Greens Theorem, Stokes Theorem, and the Divergence Theorem</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/review.html" class="sidebar-item-text sidebar-link active"><span class="chapter-number">63</span>&nbsp; <span class="chapter-title">Quick Review of Vector Calculus</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">Alternatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-8" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/plotly_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">64</span>&nbsp; <span class="chapter-title">JavaScript based plotting libraries</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/makie_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">65</span>&nbsp; <span class="chapter-title">Calculus plots with Makie</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">Appendices</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-9" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/getting_started_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">66</span>&nbsp; <span class="chapter-title">Getting started with Julia</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/julia_interfaces.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">67</span>&nbsp; <span class="chapter-title">Julia interfaces</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/calculus_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">68</span>&nbsp; <span class="chapter-title">The <code>CalculusWithJulia</code> package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/unicode.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">69</span>&nbsp; <span class="chapter-title">Usages of Unicode symbols</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/quick_notes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">70</span>&nbsp; <span class="chapter-title">Quick introduction to Calculus with Julia</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../references.html" class="sidebar-item-text sidebar-link">References</a>
</div>
</li>
</ul>
</div>
</nav>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#limits" id="toc-limits" class="nav-link active" data-scroll-target="#limits"> <span class="header-section-number">63.1</span> Limits</a></li>
<li><a href="#derivatives" id="toc-derivatives" class="nav-link" data-scroll-target="#derivatives"> <span class="header-section-number">63.2</span> Derivatives</a>
<ul class="collapse">
<li><a href="#parameterized-curves" id="toc-parameterized-curves" class="nav-link" data-scroll-target="#parameterized-curves"> <span class="header-section-number">63.2.1</span> Parameterized curves</a></li>
<li><a href="#scalar-functions" id="toc-scalar-functions" class="nav-link" data-scroll-target="#scalar-functions"> <span class="header-section-number">63.2.2</span> Scalar functions</a></li>
<li><a href="#vector-valued-functions" id="toc-vector-valued-functions" class="nav-link" data-scroll-target="#vector-valued-functions"> <span class="header-section-number">63.2.3</span> Vector-valued functions</a></li>
<li><a href="#the-divergence-curl-and-their-vanishing-properties" id="toc-the-divergence-curl-and-their-vanishing-properties" class="nav-link" data-scroll-target="#the-divergence-curl-and-their-vanishing-properties"> <span class="header-section-number">63.2.4</span> The divergence, curl, and their vanishing properties</a></li>
</ul></li>
<li><a href="#integrals" id="toc-integrals" class="nav-link" data-scroll-target="#integrals"> <span class="header-section-number">63.3</span> Integrals</a>
<ul class="collapse">
<li><a href="#line-integrals" id="toc-line-integrals" class="nav-link" data-scroll-target="#line-integrals"> <span class="header-section-number">63.3.1</span> Line integrals</a></li>
<li><a href="#surface-integrals" id="toc-surface-integrals" class="nav-link" data-scroll-target="#surface-integrals"> <span class="header-section-number">63.3.2</span> Surface integrals</a></li>
<li><a href="#stokes-theorem-divergence-theorem" id="toc-stokes-theorem-divergence-theorem" class="nav-link" data-scroll-target="#stokes-theorem-divergence-theorem"> <span class="header-section-number">63.3.3</span> Stokes theorem, divergence theorem</a></li>
</ul></li>
</ul>
<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/edit/main/quarto/integral_vector_calculus/review.qmd" class="toc-action">Edit this page</a></p><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/issues/new" class="toc-action">Report an issue</a></p></div></div></nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title d-none d-lg-block"><span class="chapter-number">63</span>&nbsp; <span class="chapter-title">Quick Review of Vector Calculus</span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<p>This section considers functions from <span class="math inline">\(R^n\)</span> into <span class="math inline">\(R^m\)</span> where one or both of <span class="math inline">\(n\)</span> or <span class="math inline">\(m\)</span> is greater than <span class="math inline">\(1\)</span>:</p>
<ul>
<li>functions <span class="math inline">\(f:R \rightarrow R^m\)</span> are called univariate functions.</li>
<li>functions <span class="math inline">\(f:R^n \rightarrow R\)</span> are called scalar-valued functions.</li>
<li>function <span class="math inline">\(f:R \rightarrow R\)</span> are univariate, scalar-valued functions.</li>
<li>functions <span class="math inline">\(\vec{r}:R\rightarrow R^m\)</span> are parameterized curves. The trace of a parameterized curve is a path.</li>
<li>functions <span class="math inline">\(F:R^n \rightarrow R^m\)</span>, may be called vector fields in applications. They are also used to describe transformations.</li>
</ul>
<p>When <span class="math inline">\(m&gt;1\)</span> a function is called <em>vector valued</em>.</p>
<p>When <span class="math inline">\(n&gt;1\)</span> the argument may be given in terms of components, e.g.&nbsp;<span class="math inline">\(f(x,y,z)\)</span>; with a point as an argument, <span class="math inline">\(F(p)\)</span>; or with a vector as an argument, <span class="math inline">\(F(\vec{a})\)</span>. The identification of a point with a vector is done frequently.</p>
<section id="limits" class="level2" data-number="63.1">
<h2 data-number="63.1" class="anchored" data-anchor-id="limits"><span class="header-section-number">63.1</span> Limits</h2>
<p>Limits when <span class="math inline">\(m &gt; 1\)</span> depend on the limits of each component existing.</p>
<p>Limits when <span class="math inline">\(n &gt; 1\)</span> are more complicated. One characterization is a limit at a point <span class="math inline">\(c\)</span> exists if and only if for <em>every</em> continuous path going to <span class="math inline">\(c\)</span> the limit along the path for every component exists in the univariate sense.</p>
</section>
<section id="derivatives" class="level2" data-number="63.2">
<h2 data-number="63.2" class="anchored" data-anchor-id="derivatives"><span class="header-section-number">63.2</span> Derivatives</h2>
<p>The derivative of a univariate function, <span class="math inline">\(f\)</span>, at a point <span class="math inline">\(c\)</span> is defined by a limit:</p>
<p><span class="math display">\[
f'(c) = \lim_{h\rightarrow 0} \frac{f(c+h)-f(c)}{h},
\]</span></p>
<p>and as a function by considering the mapping <span class="math inline">\(c\)</span> into <span class="math inline">\(f'(c)\)</span>. A characterization is it is the value for which</p>
<p><span class="math display">\[
|f(c+h) - f(h) - f'(c)h| = \mathcal{o}(|h|),
\]</span></p>
<p>That is, after dividing the left-hand side by <span class="math inline">\(|h|\)</span> the expression goes to <span class="math inline">\(0\)</span> as <span class="math inline">\(|h|\rightarrow 0\)</span>. This characterization will generalize with the norm replacing the absolute value, as needed.</p>
<section id="parameterized-curves" class="level3" data-number="63.2.1">
<h3 data-number="63.2.1" class="anchored" data-anchor-id="parameterized-curves"><span class="header-section-number">63.2.1</span> Parameterized curves</h3>
<p>The derivative of a function <span class="math inline">\(\vec{r}: R \rightarrow R^m\)</span>, <span class="math inline">\(\vec{r}'(t)\)</span>, is found by taking the derivative of each component. (The function consisting of just one component is univariate.)</p>
<p>The derivative satisfies</p>
<p><span class="math display">\[
\| \vec{r}(t+h) - \vec{r}(t) - \vec{r}'(t) h \| = \mathcal{o}(|h|).
\]</span></p>
<p>The derivative is <em>tangent</em> to the curve and indicates the direction of travel.</p>
<p>The <strong>tangent</strong> vector is the unit vector in the direction of <span class="math inline">\(\vec{r}'(t)\)</span>:</p>
<p><span class="math display">\[
\hat{T} = \frac{\vec{r}'(t)}{\|\vec{r}(t)\|}.
\]</span></p>
<p>The path is parameterized by <em>arc</em> length if <span class="math inline">\(\|\vec{r}'(t)\| = 1\)</span> for all <span class="math inline">\(t\)</span>. In this case an “<span class="math inline">\(s\)</span>” is used for the parameter, as a notational hint: <span class="math inline">\(\hat{T} = d\vec{r}/ds\)</span>.</p>
<p>The <strong>normal</strong> vector is the unit vector in the direction of the derivative of the tangent vector:</p>
<p><span class="math display">\[
\hat{N} = \frac{\hat{T}'(t)}{\|\hat{T}'(t)\|}.
\]</span></p>
<p>In dimension <span class="math inline">\(m=2\)</span>, if <span class="math inline">\(\hat{T} = \langle a, b\rangle\)</span> then <span class="math inline">\(\hat{N} = \langle -b, a\rangle\)</span> or <span class="math inline">\(\langle b, -a\rangle\)</span> and <span class="math inline">\(\hat{N}'(t)\)</span> is parallel to <span class="math inline">\(\hat{T}\)</span>.</p>
<p>In dimension <span class="math inline">\(m=3\)</span>, the <strong>binormal</strong> vector, <span class="math inline">\(\hat{B}\)</span>, is the unit vector <span class="math inline">\(\hat{T}\times\hat{N}\)</span>.</p>
<p>The <a href="">Frenet-Serret</a> formulas define the <strong>curvature</strong>, <span class="math inline">\(\kappa\)</span>, and the <strong>torsion</strong>, <span class="math inline">\(\tau\)</span>, by</p>
<p><span class="math display">\[
\begin{align}
\frac{d\hat{T}}{ds} &amp;= &amp; \kappa \hat{N} &amp;\\
\frac{d\hat{N}}{ds} &amp;= -\kappa\hat{T} &amp; &amp; + \tau\hat{B}\\
\frac{d\hat{B}}{ds} &amp;= &amp; -\tau\hat{N}&amp;
\end{align}
\]</span></p>
<p>These formulas apply in dimension <span class="math inline">\(m=2\)</span> with <span class="math inline">\(\hat{B}=\vec{0}\)</span>.</p>
<p>The curvature, <span class="math inline">\(\kappa\)</span>, can be visualized by imagining a circle of radius <span class="math inline">\(r=1/\kappa\)</span> best approximating the path at a point. (A straight line would have a circle of infinite radius and curvature <span class="math inline">\(0\)</span>.)</p>
<p>The chain rule says <span class="math inline">\((\vec{r}(g(t))' = \vec{r}'(g(t)) g'(t)\)</span>.</p>
</section>
<section id="scalar-functions" class="level3" data-number="63.2.2">
<h3 data-number="63.2.2" class="anchored" data-anchor-id="scalar-functions"><span class="header-section-number">63.2.2</span> Scalar functions</h3>
<p>A scalar function, <span class="math inline">\(f:R^n\rightarrow R\)</span>, <span class="math inline">\(n &gt; 1\)</span> has a <strong>partial derivative</strong> defined. For <span class="math inline">\(n=2\)</span>, these are:</p>
<p><span class="math display">\[
\begin{align}
\frac{\partial{f}}{\partial{x}}(x,y) &amp;=
\lim_{h\rightarrow 0} \frac{f(x+h,y)-f(x,y)}{h}\\
\frac{\partial{f}}{\partial{y}}(x,y) &amp;=
\lim_{h\rightarrow 0} \frac{f(x,y+h)-f(x,y)}{h}.
\end{align}
\]</span></p>
<p>The generalization to <span class="math inline">\(n&gt;2\)</span> is clear - the partial derivative in <span class="math inline">\(x_i\)</span> is the derivative of <span class="math inline">\(f\)</span> when the <em>other</em> <span class="math inline">\(x_j\)</span> are held constant.</p>
<p>This may be viewed as the derivative of the univariate function <span class="math inline">\((f\circ\vec{r})(t)\)</span> where <span class="math inline">\(\vec{r}(t) = p + t \hat{e}_i\)</span>, <span class="math inline">\(\hat{e}_i\)</span> being the unit vector of all <span class="math inline">\(0\)</span>s except a <span class="math inline">\(1\)</span> in the <span class="math inline">\(i\)</span>th component.</p>
<p>The <strong>gradient</strong> of <span class="math inline">\(f\)</span>, when the limits exist, is the vector-valued function for <span class="math inline">\(R^n\)</span> to <span class="math inline">\(R^n\)</span>:</p>
<p><span class="math display">\[
\nabla{f} = \langle
\frac{\partial{f}}{\partial{x_1}},
\frac{\partial{f}}{\partial{x_2}},
\dots
\frac{\partial{f}}{\partial{x_n}}
\rangle.
\]</span></p>
<p>The gradient satisfies:</p>
<p><span class="math display">\[
\|f(\vec{x}+\Delta{\vec{x}}) - f(\vec{x}) - \nabla{f}\cdot\Delta{\vec{x}}\| = \mathcal{o}(\|\Delta{\vec{x}\|}).
\]</span></p>
<p>The gradient is viewed as a column vector. If the dot product above is viewed as matrix multiplication, then it would be written <span class="math inline">\(\nabla{f}' \Delta{\vec{x}}\)</span>.</p>
<p><strong>Linearization</strong> is the <em>approximation</em></p>
<p><span class="math display">\[
f(\vec{x}+\Delta{\vec{x}}) \approx f(\vec{x}) + \nabla{f}\cdot\Delta{\vec{x}}.
\]</span></p>
<p>The <strong>directional derivative</strong> of <span class="math inline">\(f\)</span> in the direction <span class="math inline">\(\vec{v}\)</span> is <span class="math inline">\(\vec{v}\cdot\nabla{f}\)</span>, which can be seen as the derivative of the univariate function <span class="math inline">\((f\circ\vec{r})(t)\)</span> where <span class="math inline">\(\vec{r}(t) = p + t \vec{v}\)</span>.</p>
<p>For the function <span class="math inline">\(z=f(x,y)\)</span> the gradient points in the direction of steepest ascent. Ascent is seen in the <span class="math inline">\(3\)</span>d surface, the gradient is <span class="math inline">\(2\)</span> dimensional.</p>
<p>For a function <span class="math inline">\(f(\vec{x})\)</span>, a <strong>level curve</strong> is the set of values for which <span class="math inline">\(f(\vec{x})=c\)</span>, <span class="math inline">\(c\)</span> being some constant. Plotted, this may give a curve or surface (in <span class="math inline">\(n=2\)</span> or <span class="math inline">\(n=3\)</span>). The gradient at a point <span class="math inline">\(\vec{x}\)</span> with <span class="math inline">\(f(\vec{x})=c\)</span> will be <em>orthogonal</em> to the level curve <span class="math inline">\(f=c\)</span>.</p>
<p>Partial derivatives are scalar functions, so will themselves have partial derivatives when the limits are defined. The notation <span class="math inline">\(f_{xy}\)</span> stands for the partial derivative in <span class="math inline">\(y\)</span> of the partial derivative of <span class="math inline">\(f\)</span> in <span class="math inline">\(x\)</span>. <a href="">Schwarz</a>s theorem says the order of partial derivatives will not matter (e.g., <span class="math inline">\(f_{xy} = f_{yx}\)</span>) provided the higher-order derivatives are continuous.</p>
<p>The chain rule applied to <span class="math inline">\((f\circ\vec{r})(t)\)</span> says:</p>
<p><span class="math display">\[
\frac{d(f\circ\vec{r})}{dt} = \nabla{f}(\vec{r}) \cdot \vec{r}'.
\]</span></p>
</section>
<section id="vector-valued-functions" class="level3" data-number="63.2.3">
<h3 data-number="63.2.3" class="anchored" data-anchor-id="vector-valued-functions"><span class="header-section-number">63.2.3</span> Vector-valued functions</h3>
<p>For a function <span class="math inline">\(F:R^n \rightarrow R^m\)</span>, the <strong>total derivative</strong> of <span class="math inline">\(F\)</span> is the linear operator <span class="math inline">\(d_F\)</span> satisfying:</p>
<p><span class="math display">\[
\|F(\vec{x} + \vec{h})-F(\vec{x}) - d_F \vec{h}\| = \mathcal{o}(\|\vec{h}\|)
\]</span></p>
<p>For <span class="math inline">\(F=\langle f_1, f_2, \dots, f_m\rangle\)</span> the total derivative is the <strong>Jacobian</strong>, a <span class="math inline">\(m \times n\)</span> matrix of partial derivatives:</p>
<p><span class="math display">\[
J_f = \left[
\begin{align}{}
\frac{\partial f_1}{\partial x_1} &amp;\quad \frac{\partial f_1}{\partial x_2} &amp;\dots&amp;\quad\frac{\partial f_1}{\partial x_n}\\
\frac{\partial f_2}{\partial x_1} &amp;\quad \frac{\partial f_2}{\partial x_2} &amp;\dots&amp;\quad\frac{\partial f_2}{\partial x_n}\\
&amp;&amp;\vdots&amp;\\
\frac{\partial f_m}{\partial x_1} &amp;\quad \frac{\partial f_m}{\partial x_2} &amp;\dots&amp;\quad\frac{\partial f_m}{\partial x_n}
\end{align}
\right].
\]</span></p>
<p>This can be viewed as being comprised of row vectors, each being the individual gradients; or as column vectors each being the vector of partial derivatives for a given variable.</p>
<p>The <strong>chain rule</strong> for <span class="math inline">\(F:R^n \rightarrow R^m\)</span> composed with <span class="math inline">\(G:R^k \rightarrow R^n\)</span> is:</p>
<p><span class="math display">\[
d_{F\circ G}(a) = d_F(G(a)) d_G(a),
\]</span></p>
<p>That is the total derivative of <span class="math inline">\(F\)</span> at the point <span class="math inline">\(G(a)\)</span> times (matrix multiplication) the total derivative of <span class="math inline">\(G\)</span> at <span class="math inline">\(a\)</span>. The dimensions work out as <span class="math inline">\(d_F\)</span> is <span class="math inline">\(m\times n\)</span> and <span class="math inline">\(d_G\)</span> is <span class="math inline">\(n\times k\)</span>, so <span class="math inline">\(d_(F\circ G)\)</span> will be <span class="math inline">\(m\times k\)</span> and <span class="math inline">\(F\circ{G}: R^k\rightarrow R^m\)</span>.</p>
<p>A scalar function <span class="math inline">\(f:R^n \rightarrow R\)</span> and a parameterized curve <span class="math inline">\(\vec{r}:R\rightarrow R^n\)</span> composes to yield a univariate function. The total derivative of <span class="math inline">\(f\circ\vec{r}\)</span> satisfies:</p>
<p><span class="math display">\[
d_f(\vec{r}) d_\vec{r} = \nabla{f}(\vec{r}(t))' \vec{r}'(t) =
\nabla{f}(\vec{r}(t)) \cdot \vec{r}'(t),
\]</span></p>
<p>as above. (There is an identification of a <span class="math inline">\(1\times 1\)</span> matrix with a scalar in re-expressing as a dot product.)</p>
</section>
<section id="the-divergence-curl-and-their-vanishing-properties" class="level3" data-number="63.2.4">
<h3 data-number="63.2.4" class="anchored" data-anchor-id="the-divergence-curl-and-their-vanishing-properties"><span class="header-section-number">63.2.4</span> The divergence, curl, and their vanishing properties</h3>
<p>Define the <strong>divergence</strong> of a vector-valued function <span class="math inline">\(F:R^n \rightarrow R^n\)</span> by:</p>
<p><span class="math display">\[
\text{divergence}(F) =
\frac{\partial{F_{x_1}}}{\partial{x_1}} +
\frac{\partial{F_{x_2}}}{\partial{x_2}} + \cdots
\frac{\partial{F_{x_n}}}{\partial{x_n}}.
\]</span></p>
<p>The divergence is a scalar function. For a vector field <span class="math inline">\(F\)</span>, it measures the microscopic flow out of a region.</p>
<p>A vector field whose divergence is identically <span class="math inline">\(0\)</span> is called <strong>incompressible</strong>.</p>
<p>Define the <strong>curl</strong> of a <em>two</em>-dimensional vector field, <span class="math inline">\(F:R^2 \rightarrow R^2\)</span>, by:</p>
<p><span class="math display">\[
\text{curl}(F) = \frac{\partial{F_y}}{\partial{x}} -
\frac{\partial{F_x}}{\partial{y}}.
\]</span></p>
<p>The curl for <span class="math inline">\(n=2\)</span> is a scalar function.</p>
<p>For <span class="math inline">\(n=3\)</span> define the <strong>curl</strong> of <span class="math inline">\(F:R^3 \rightarrow R^3\)</span> to be the <em>vector field</em>:</p>
<p><span class="math display">\[
\text{curl}(F) =
\langle \
\frac{\partial{F_z}}{\partial{y}} - \frac{\partial{F_y}}{\partial{z}},
\frac{\partial{F_x}}{\partial{z}} - \frac{\partial{F_z}}{\partial{x}},
\frac{\partial{F_y}}{\partial{x}} - \frac{\partial{F_x}}{\partial{y}}
\rangle.
\]</span></p>
<p>The curl measures the circulation in a vector field. In dimension <span class="math inline">\(n=3\)</span> it <em>points</em> in the direction of the normal of the plane of maximum circulation with direction given by the right-hand rule.</p>
<p>A vector field whose curl is identically of magnitude <span class="math inline">\(0\)</span> is called <strong>irrotational</strong>.</p>
<p>The <span class="math inline">\(\nabla\)</span> operator is the <em>formal</em> vector</p>
<p><span class="math display">\[
\nabla = \langle
\frac{\partial}{\partial{x}},
\frac{\partial}{\partial{y}},
\frac{\partial}{\partial{z}}
\rangle.
\]</span></p>
<p>The gradient is then scalar “multiplication” on the left: <span class="math inline">\(\nabla{f}\)</span>.</p>
<p>The divergence is the dot product on the left: <span class="math inline">\(\nabla\cdot{F}\)</span>.</p>
<p>The curl is the the cross product on the left: <span class="math inline">\(\nabla\times{F}\)</span>.</p>
<p>These operations satisfy two vanishing properties:</p>
<ul>
<li>The curl of a gradient is the zero vector: <span class="math inline">\(\nabla\times\nabla{f}=\vec{0}\)</span></li>
<li>The divergence of a curl is <span class="math inline">\(0\)</span>: <span class="math inline">\(\nabla\cdot(\nabla\times F)=0\)</span></li>
</ul>
<p><a href="">Helmholtz</a> decomposition theorem says a vector field (<span class="math inline">\(n=3\)</span>) which vanishes rapidly enough can be expressed in terms of <span class="math inline">\(F = -\nabla\phi + \nabla\times{A}\)</span>. The left term will be irrotational (no curl) and the right term will be incompressible (no divergence).</p>
</section>
</section>
<section id="integrals" class="level2" data-number="63.3">
<h2 data-number="63.3" class="anchored" data-anchor-id="integrals"><span class="header-section-number">63.3</span> Integrals</h2>
<p>The definite integral, <span class="math inline">\(\int_a^b f(x) dx\)</span>, for a bounded univariate function is defined in terms Riemann sums, <span class="math inline">\(\lim \sum f(c_i)\Delta{x_i}\)</span> as the maximum <em>partition</em> size goes to <span class="math inline">\(0\)</span>. Similarly the integral of a bounded scalar function <span class="math inline">\(f:R^n \rightarrow R\)</span> over a box-like region <span class="math inline">\([a_1,b_1]\times[a_2,b_2]\times\cdots\times[a_n,b_n]\)</span> can be defined in terms of a limit of Riemann sums. A Riemann integrable function is one for which the upper and lower Riemann sums agree in the limit. A characterization of a Riemann integrable function is that the set of discontinuities has measure <span class="math inline">\(0\)</span>.</p>
<p>If <span class="math inline">\(f\)</span> and the partial functions (<span class="math inline">\(x \rightarrow f(x,y)\)</span> and <span class="math inline">\(y \rightarrow f(x,y)\)</span>) are Riemann integrable, then Fubinis theorem allows the definite integral to be performed iteratively:</p>
<p><span class="math display">\[
\iint_{R\times S}fdV = \int_R \left(\int_S f(x,y) dy\right) dx
= \int_S \left(\int_R f(x,y) dx\right) dy.
\]</span></p>
<p>The integral satisfies linearity and monotonicity properties that follow from the definitions:</p>
<ul>
<li>For integrable <span class="math inline">\(f\)</span> and <span class="math inline">\(g\)</span> and constants <span class="math inline">\(a\)</span> and <span class="math inline">\(b\)</span>:</li>
</ul>
<p><span class="math display">\[
\iint_R (af(x) + bg(x))dV = a\iint_R f(x)dV + b\iint_R g(x) dV.
\]</span></p>
<ul>
<li>If <span class="math inline">\(R\)</span> and <span class="math inline">\(R'\)</span> are <em>disjoint</em> rectangular regions (possibly sharing a boundary), then the integral over the union is defined by linearity:</li>
</ul>
<p><span class="math display">\[
\iint_{R \cup R'} f(x) dV = \iint_R f(x)dV + \iint_{R'} f(x) dV.
\]</span></p>
<ul>
<li>As <span class="math inline">\(f\)</span> is bounded, let <span class="math inline">\(m \leq f(x) \leq M\)</span> for all <span class="math inline">\(x\)</span> in <span class="math inline">\(R\)</span>. Then</li>
</ul>
<p><span class="math display">\[
m V(R) \leq \iint_R f(x) dV \leq MV(R).
\]</span></p>
<ul>
<li>If <span class="math inline">\(f\)</span> and <span class="math inline">\(g\)</span> are integrable <em>and</em> <span class="math inline">\(f(x) \leq g(x)\)</span>, then the integrals have the same property, namely <span class="math inline">\(\iint_R f dV \leq \iint_R gdV\)</span>.</li>
<li>If <span class="math inline">\(S \subset R\)</span>, both closed rectangles, then if <span class="math inline">\(f\)</span> is integrable over <span class="math inline">\(R\)</span> it will be also over <span class="math inline">\(S\)</span> and, when <span class="math inline">\(f\geq 0\)</span>, <span class="math inline">\(\iint_S f dV \leq \iint_R fdV\)</span>.</li>
<li>If <span class="math inline">\(f\)</span> is bounded and integrable, then <span class="math inline">\(|\iint_R fdV| \leq \iint_R |f| dV\)</span>.</li>
</ul>
<p>In two dimensions, we have the following interpretations:</p>
<p><span class="math display">\[
\begin{align}
\iint_R dA &amp;= \text{area of } R\\
\iint_R \rho dA &amp;= \text{mass with constant density }\rho\\
\iint_R \rho(x,y) dA &amp;= \text{mass of region with density }\rho\\
\frac{1}{\text{area}}\iint_R x \rho(x,y)dA &amp;= \text{centroid of region in } x \text{ direction}\\
\frac{1}{\text{area}}\iint_R y \rho(x,y)dA &amp;= \text{centroid of region in } y \text{ direction}
\end{align}
\]</span></p>
<p>In three dimensions, we have the following interpretations:</p>
<p><span class="math display">\[
\begin{align}
\iint_VdV &amp;= \text{volume of } V\\
\iint_V \rho dV &amp;= \text{mass with constant density }\rho\\
\iint_V \rho(x,y) dV &amp;= \text{mass of volume with density }\rho\\
\frac{1}{\text{volume}}\iint_V x \rho(x,y)dV &amp;= \text{centroid of volume in } x \text{ direction}\\
\frac{1}{\text{volume}}\iint_V y \rho(x,y)dV &amp;= \text{centroid of volume in } y \text{ direction}\\
\frac{1}{\text{volume}}\iint_V z \rho(x,y)dV &amp;= \text{centroid of volume in } z \text{ direction}
\end{align}
\]</span></p>
<p>To compute integrals over non-box-like regions, Fubinis theorem may be utilized. Alternatively, a <strong>transformation</strong> of variables</p>
<section id="line-integrals" class="level3" data-number="63.3.1">
<h3 data-number="63.3.1" class="anchored" data-anchor-id="line-integrals"><span class="header-section-number">63.3.1</span> Line integrals</h3>
<p>For a parameterized curve, <span class="math inline">\(\vec{r}(t)\)</span>, the <strong>line integral</strong> of a scalar function between <span class="math inline">\(a \leq t \leq b\)</span> is defined by: <span class="math inline">\(\int_a^b f(\vec{r}(t)) \| \vec{r}'(t)\| dt\)</span>. For a path parameterized by arc-length, the integral is expressed by <span class="math inline">\(\int_C f(\vec{r}(s)) ds\)</span> or simply <span class="math inline">\(\int_C f ds\)</span>, as the norm is <span class="math inline">\(1\)</span> and <span class="math inline">\(C\)</span> expresses the path.</p>
<p>A Jordan curve in two dimensions is a non-intersecting continuous loop in the plane. The Jordan curve theorem states that such a curve divides the plane into a bounded and unbounded region. The curve is <em>positively</em> parameterized if the the bounded region is kept on the left. A line integral over a Jordan curve is denoted <span class="math inline">\(\oint_C f ds\)</span>.</p>
<p>Some interpretations: <span class="math inline">\(\int_a^b \| \vec{r}'(t)\| dt\)</span> computes the <em>arc-length</em>. If the path represents a wire with density <span class="math inline">\(\rho(\vec{x})\)</span> then <span class="math inline">\(\int_a^b \rho(\vec{r}(t)) \|\vec{r}'(t)\| dt\)</span> computes the mass of the wire.</p>
<p>The line integral is also defined for a vector field <span class="math inline">\(F:R^n \rightarrow R^n\)</span> through <span class="math inline">\(\int_a^b F(\vec{r}(t)) \cdot \vec{r}'(t) dt\)</span>. When parameterized by arc length, this becomes <span class="math inline">\(\int_C F(\vec{r}(s)) \cdot \hat{T} ds\)</span> or more simply <span class="math inline">\(\int_C F\cdot\hat{T}ds\)</span>. In dimension <span class="math inline">\(n=2\)</span> if <span class="math inline">\(\hat{N}\)</span> is the normal, then this line integral (the flow) is also of interest <span class="math inline">\(\int_a^b F(\vec{r}(t)) \cdot \hat{N} dt\)</span> (this is also expressed by <span class="math inline">\(\int_C F\cdot\hat{N} ds\)</span>).</p>
<p>When <span class="math inline">\(F\)</span> is a <em>force field</em>, then the interpretation of <span class="math inline">\(\int_a^b F(\vec{r}(t)) \cdot \vec{r}'(t) dt\)</span> is the amount of <em>work</em> to move an object from <span class="math inline">\(\vec{r}(a)\)</span> to <span class="math inline">\(\vec{r}(b)\)</span>. (Work measures force applied times distance moved.)</p>
<p>A <strong>conservative force</strong> is a force field within an open region <span class="math inline">\(R\)</span> with the property that the total work done in moving a particle between two points is independent of the path taken. (Similarly, integrals over Jordan curves are zero.)</p>
<p>The gradient theorem or <strong>fundamental theorem of line integrals</strong> states if <span class="math inline">\(\phi\)</span> is a scalar function then the vector field <span class="math inline">\(\nabla{\phi}\)</span> (if continuous in <span class="math inline">\(R\)</span>) is a conservative field. That is if <span class="math inline">\(q\)</span> and <span class="math inline">\(p\)</span> are points, <span class="math inline">\(C\)</span> any curve in <span class="math inline">\(R\)</span>, and <span class="math inline">\(\vec{r}\)</span> a parameterization of <span class="math inline">\(C\)</span> over <span class="math inline">\([a,b]\)</span> that <span class="math inline">\(\phi(p) - \phi(q) = \int_a^b \nabla{f}(\vec{r}(t)) \cdot \vec{r}'(t) dt\)</span>.</p>
<p>If <span class="math inline">\(\phi\)</span> is a scalar function producing a field <span class="math inline">\(\nabla{\phi}\)</span> then in dimensions <span class="math inline">\(2\)</span> and <span class="math inline">\(3\)</span> the curl of <span class="math inline">\(\nabla{\phi}\)</span> is zero when the functions involved are continuous. Conversely, if the curl of a force field, <span class="math inline">\(F\)</span>, is zero <em>and</em> the derivatives are continuous in a <em>simply connected</em> domain, then there exists a scalar potential function, <span class="math inline">\(\phi,\)</span> with <span class="math inline">\(F = -\nabla{\phi}\)</span>.</p>
<p>In dimension <span class="math inline">\(2\)</span>, if <span class="math inline">\(F\)</span> describes a flow field, the integral <span class="math inline">\(\int_C F \cdot\hat{N}ds\)</span> is interpreted as the flow across the curve <span class="math inline">\(C\)</span>; when <span class="math inline">\(C\)</span> is a closed curve <span class="math inline">\(\oint_C F\cdot\hat{N}ds\)</span> is interpreted as the flow out of the region, when <span class="math inline">\(C\)</span> is positively parameterized.</p>
<p><strong>Greens theorem</strong> states if <span class="math inline">\(C\)</span> is a positively oriented Jordan curve in the plane bounding a region <span class="math inline">\(D\)</span> and <span class="math inline">\(F\)</span> is a vector field <span class="math inline">\(F:R^2 \rightarrow R^2\)</span> then <span class="math inline">\(\oint_C F\cdot\hat{T}ds = \iint_D \text{curl}(F) dA\)</span>.</p>
<p>Greens theorem can be re-expressed in flow form: <span class="math inline">\(\oint_C F\cdot\hat{N}ds=\iint_D\text{divergence}(F)dA\)</span>.</p>
<p>For <span class="math inline">\(F=\langle -y,x\rangle\)</span>, Greens theorem says the area of <span class="math inline">\(D\)</span> is given by <span class="math inline">\((1/2)\oint_C F\cdot\vec{r}' dt\)</span>. Similarly, if <span class="math inline">\(F=\langle 0,x\rangle\)</span> or <span class="math inline">\(F=\langle -y,0\rangle\)</span> then the area is given by <span class="math inline">\(\oint_C F\cdot\vec{r}'dt\)</span>. The above follows as <span class="math inline">\(\text{curl}(F)\)</span> is <span class="math inline">\(2\)</span> or <span class="math inline">\(1\)</span>. Similar formulas can be given to compute the centroids, by identifying a vector field with <span class="math inline">\(\text{curl}(F) = x\)</span> or <span class="math inline">\(y\)</span>.</p>
</section>
<section id="surface-integrals" class="level3" data-number="63.3.2">
<h3 data-number="63.3.2" class="anchored" data-anchor-id="surface-integrals"><span class="header-section-number">63.3.2</span> Surface integrals</h3>
<p>A surface in <span class="math inline">\(3\)</span> dimensions can be described by a scalar function <span class="math inline">\(z=f(x,y)\)</span>, a parameterization <span class="math inline">\(F:R^2 \rightarrow R^3\)</span> or as a level curve of a scalar function <span class="math inline">\(f(x,y,z)\)</span>. The second case, covers the first through the parameterization <span class="math inline">\((x,y) \rightarrow (x,y,f(x,y)\)</span>. For a parameterization of a surface, <span class="math inline">\(\Phi(u,v) = \langle \Phi_x, \Phi_y, \Phi_z\rangle\)</span>, let <span class="math inline">\(\partial{\Phi}/\partial{u}\)</span> be the <span class="math inline">\(3\)</span>-d vector <span class="math inline">\(\langle \partial{\Phi_x}/\partial{u}, \partial{\Phi_y}/\partial{u}, \partial{\Phi_z}/\partial{u}\rangle\)</span>, similarly define <span class="math inline">\(\partial{\Phi}/\partial{v}\)</span>. As vectors, these lie in the tangent plane to the surface and this plane has normal vector <span class="math inline">\(\vec{N}=\partial{\Phi}/\partial{u}\times\partial{\Phi}/\partial{v}\)</span>. For a closed surface, the parametrization is positive if <span class="math inline">\(\vec{N}\)</span> is an outward pointing normal. Let the <em>surface element</em> be defined by <span class="math inline">\(\|\vec{N}\|\)</span>.</p>
<p>The surface integral of a scalar function <span class="math inline">\(f:R^3 \rightarrow R\)</span> for a parameterization <span class="math inline">\(\Phi:R \rightarrow S\)</span> is defined by</p>
<p><span class="math display">\[
\iint_R f(\Phi(u,v))
\|\frac{\partial{\Phi}}{\partial{u}} \times \frac{\partial{\Phi}}{\partial{v}}\|
du dv
\]</span></p>
<p>If <span class="math inline">\(F\)</span> is a vector field, the surface integral may be defined as a flow across the boundary through</p>
<p><span class="math display">\[
\iint_R F(\Phi(u,v)) \cdot \vec{N} du dv =
\iint_R (F \cdot \hat{N}) \|\frac{\partial{\Phi}}{\partial{u}} \times \frac{\partial{\Phi}}{\partial{v}}\| du dv = \iint_S (F\cdot\hat{N})dS
\]</span></p>
</section>
<section id="stokes-theorem-divergence-theorem" class="level3" data-number="63.3.3">
<h3 data-number="63.3.3" class="anchored" data-anchor-id="stokes-theorem-divergence-theorem"><span class="header-section-number">63.3.3</span> Stokes theorem, divergence theorem</h3>
<p><strong>Stokes theorem</strong> states that in dimension <span class="math inline">\(3\)</span> if <span class="math inline">\(S\)</span> is a smooth surface with boundary <span class="math inline">\(C\)</span> <em>oriented</em> so the right-hand rule gives the choice of normal for <span class="math inline">\(S\)</span> and <span class="math inline">\(F\)</span> is a vector field with continuous partial derivatives then:</p>
<p><span class="math display">\[
\iint_S (\nabla\times{F}) \cdot \hat{N} dS = \oint_C F ds.
\]</span></p>
<p>Stokes theorem has the same formulation as Greens theorem in dimension <span class="math inline">\(2\)</span>, where the surface integral is just the <span class="math inline">\(2\)</span>-dimensional integral.</p>
<p>Stokes theorem is used to show a vector field <span class="math inline">\(F\)</span> with zero curl is conservative if <span class="math inline">\(F\)</span> is continuous in a simply connected region.</p>
<p>Stokes theorem is used in Physics, for example, to relate the differential and integral forms of <span class="math inline">\(2\)</span> of Maxwells equations.</p>
<hr>
<p>The <strong>divergence theorem</strong> states if <span class="math inline">\(V\)</span> is a compact volume in <span class="math inline">\(R^3\)</span> with piecewise smooth boundary <span class="math inline">\(S=\partial{V}\)</span> and <span class="math inline">\(F\)</span> is a vector field with continuous partial derivatives then:</p>
<p><span class="math display">\[
\iint_V (\nabla\cdot{F})dV = \oint_S (F\cdot\hat{N})dS.
\]</span></p>
<p>The divergence theorem is available for other dimensions. In the <span class="math inline">\(n=2\)</span> case, it is the alternate (flow) form of Greens theorem.</p>
<p>The divergence theorem is used in Physics to express physical laws in either integral or differential form.</p>
</section>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
setTimeout(function() {
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
let href = ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const cites = ref.parentNode.getAttribute('data-cites').split(' ');
tippyHover(ref, function() {
var popup = window.document.createElement('div');
cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// target, if specified
link.setAttribute("target", "_blank");
}
}
});
</script>
<nav class="page-navigation">
<div class="nav-page nav-page-previous">
<a href="../integral_vector_calculus/stokes_theorem.html" class="pagination-link">
<i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">62</span>&nbsp; <span class="chapter-title">Greens Theorem, Stokes Theorem, and the Divergence Theorem</span></span>
</a>
</div>
<div class="nav-page nav-page-next">
<a href="../alternatives/plotly_plotting.html" class="pagination-link">
<span class="nav-page-text"><span class="chapter-number">64</span>&nbsp; <span class="chapter-title">JavaScript based plotting libraries</span></span> <i class="bi bi-arrow-right-short"></i>
</a>
</div>
</nav>
</div> <!-- /content -->
<footer class="footer">
<div class="nav-footer">
<div class="nav-footer-center">Copyright 2022, John Verzani</div>
</div>
</footer>
</body></html>