CalculusWithJuliaNotes.jl/quarto/0e7f54ed/integrals/surface_area.html
2022-08-11 13:15:19 -04:00

1516 lines
266 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.0.32">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Calculus with Julia - 47&nbsp; Surface Area</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<link href="../ODEs/odes.html" rel="next">
<link href="../integrals/arc_length.html" rel="prev">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "navbar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "end",
"type": "overlay",
"limit": 20,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit"
}
}</script>
<script async="" src="https://hypothes.is/embed.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" integrity="sha512-c3Nl8+7g4LMSTdrm621y7kf9v3SDPnhxLNhcjFJbKECVnmZHTdo+IRO05sNLTH/D3vA6u1X32ehoLC7WFVdheg==" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js" integrity="sha512-bLT0Qm9VnAYZDflyKcBaQ2gg0hSYNQrJ8RilYldYQ1FxQYoCLtUjuuRuZo+fjqhx/qtq/1itJ0C2ejDxltZVFg==" crossorigin="anonymous"></script>
<script type="application/javascript">define('jquery', [],function() {return window.jQuery;})</script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
</head>
<body class="nav-sidebar floating nav-fixed">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="navbar navbar-expand-lg navbar-dark ">
<div class="navbar-container container-fluid">
<a class="navbar-brand" href="../index.html">
<img src="../logo.png" alt="">
<span class="navbar-title">Calculus with Julia</span>
</a>
<div id="quarto-search" class="" title="Search"></div>
</div> <!-- /container-fluid -->
</nav>
<nav class="quarto-secondary-nav" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<div class="container-fluid d-flex justify-content-between">
<h1 class="quarto-secondary-nav-title"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">Surface Area</span></h1>
<button type="button" class="quarto-btn-toggle btn" aria-label="Show secondary navigation">
<i class="bi bi-chevron-right"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article page-navbar">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse sidebar-navigation floating overflow-auto">
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">Preface</a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">Precalculus Concepts</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/calculator.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">From calculator to computer</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/variables.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Variables</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/numbers_types.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Number systems</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/logical_expressions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">Inequalities, Logical expressions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">Vectors</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/ranges.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">Ranges and Sets</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">7</span>&nbsp; <span class="chapter-title">Functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">8</span>&nbsp; <span class="chapter-title">The Graph of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/transformations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">9</span>&nbsp; <span class="chapter-title">Function manipulations</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/inversefunctions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">10</span>&nbsp; <span class="chapter-title">The Inverse of a Function</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">11</span>&nbsp; <span class="chapter-title">Polynomials</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomial_roots.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">12</span>&nbsp; <span class="chapter-title">Roots of a polynomial</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/polynomials_package.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">13</span>&nbsp; <span class="chapter-title">The Polynomials package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/rational_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">14</span>&nbsp; <span class="chapter-title">Rational functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/exp_log_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">15</span>&nbsp; <span class="chapter-title">Exponential and logarithmic functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/trig_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">16</span>&nbsp; <span class="chapter-title">Trigonometric functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../precalc/julia_overview.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">17</span>&nbsp; <span class="chapter-title">Overview of Julia commands</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">Limits</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">18</span>&nbsp; <span class="chapter-title">Limits</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/limits_extensions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">19</span>&nbsp; <span class="chapter-title">Limits, issues, extensions of the concept</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/continuity.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">20</span>&nbsp; <span class="chapter-title">Continuity</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../limits/intermediate_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">21</span>&nbsp; <span class="chapter-title">Implications of continuity</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">Derivatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">22</span>&nbsp; <span class="chapter-title">Derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/numeric_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">23</span>&nbsp; <span class="chapter-title">Numeric derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/symbolic_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">24</span>&nbsp; <span class="chapter-title">Symbolic derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">25</span>&nbsp; <span class="chapter-title">The mean value theorem for differentiable functions.</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/optimization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">26</span>&nbsp; <span class="chapter-title">Optimization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/first_second_derivatives.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">27</span>&nbsp; <span class="chapter-title">The first and second derivatives</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/curve_sketching.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">28</span>&nbsp; <span class="chapter-title">Curve Sketching</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/linearization.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">29</span>&nbsp; <span class="chapter-title">Linearization</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/newtons_method.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">30</span>&nbsp; <span class="chapter-title">Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/more_zeros.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">31</span>&nbsp; <span class="chapter-title">Derivative-free alternatives to Newtons method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/lhospitals_rule.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">32</span>&nbsp; <span class="chapter-title">LHospitals Rule</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/implicit_differentiation.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">33</span>&nbsp; <span class="chapter-title">Implicit Differentiation</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/related_rates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">34</span>&nbsp; <span class="chapter-title">Related rates</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../derivatives/taylor_series_polynomials.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">35</span>&nbsp; <span class="chapter-title">Taylor Polynomials and other Approximating Polynomials</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">Integrals</a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" aria-expanded="true">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">36</span>&nbsp; <span class="chapter-title">Area under a curve</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/ftc.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">37</span>&nbsp; <span class="chapter-title">Fundamental Theorem or Calculus</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/substitution.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">38</span>&nbsp; <span class="chapter-title">Substitution</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/integration_by_parts.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">39</span>&nbsp; <span class="chapter-title">Integration By Parts</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/partial_fractions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">40</span>&nbsp; <span class="chapter-title">Partial Fractions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/improper_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">41</span>&nbsp; <span class="chapter-title">Improper Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/mean_value_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">42</span>&nbsp; <span class="chapter-title">Mean value theorem for integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/area_between_curves.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">43</span>&nbsp; <span class="chapter-title">Area between two curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/center_of_mass.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">44</span>&nbsp; <span class="chapter-title">Center of Mass</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/volumes_slice.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">45</span>&nbsp; <span class="chapter-title">Volumes by slicing</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/arc_length.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">Arc length</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integrals/surface_area.html" class="sidebar-item-text sidebar-link active"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">Surface Area</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">ODEs</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-5" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-5" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/odes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">ODEs</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/euler.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">49</span>&nbsp; <span class="chapter-title">Eulers method</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/solve.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">50</span>&nbsp; <span class="chapter-title">The problem-algorithm-solve interface</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../ODEs/differential_equations.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">51</span>&nbsp; <span class="chapter-title">The <code>DifferentialEquations</code> suite</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">Differential vector calculus</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-6" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-6" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/polar_coordinates.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">52</span>&nbsp; <span class="chapter-title">Polar Coordinates and Curves</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vectors.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">53</span>&nbsp; <span class="chapter-title">Vectors and matrices</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_valued_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">54</span>&nbsp; <span class="chapter-title">Vector-valued functions, <span class="math inline">\(f:R \rightarrow R^n\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">55</span>&nbsp; <span class="chapter-title">Scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/scalar_functions_applications.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">56</span>&nbsp; <span class="chapter-title">Applications with scalar functions</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/vector_fields.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">57</span>&nbsp; <span class="chapter-title">Functions <span class="math inline">\(R^n \rightarrow R^m\)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../differentiable_vector_calculus/plots_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">58</span>&nbsp; <span class="chapter-title">2D and 3D plots in Julia with Plots</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="false">Integral vector calculus</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-7" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-7" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/double_triple_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">59</span>&nbsp; <span class="chapter-title">Multi-dimensional integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/line_integrals.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">60</span>&nbsp; <span class="chapter-title">Line and Surface Integrals</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/div_grad_curl.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">61</span>&nbsp; <span class="chapter-title">The Gradient, Divergence, and Curl</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/stokes_theorem.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">62</span>&nbsp; <span class="chapter-title">Greens Theorem, Stokes Theorem, and the Divergence Theorem</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../integral_vector_calculus/review.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">63</span>&nbsp; <span class="chapter-title">Quick Review of Vector Calculus</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">Alternatives</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-8" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-8" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/plotly_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">64</span>&nbsp; <span class="chapter-title">JavaScript based plotting libraries</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../alternatives/makie_plotting.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">65</span>&nbsp; <span class="chapter-title">Calculus plots with Makie</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">Appendices</a>
<a class="sidebar-item-toggle text-start collapsed" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-9" aria-expanded="false">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-9" class="collapse list-unstyled sidebar-section depth1 ">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/getting_started_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">66</span>&nbsp; <span class="chapter-title">Getting started with Julia</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/julia_interfaces.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">67</span>&nbsp; <span class="chapter-title">Julia interfaces</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/calculus_with_julia.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">68</span>&nbsp; <span class="chapter-title">The <code>CalculusWithJulia</code> package</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/unicode.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">69</span>&nbsp; <span class="chapter-title">Usages of Unicode symbols</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../misc/quick_notes.html" class="sidebar-item-text sidebar-link"><span class="chapter-number">70</span>&nbsp; <span class="chapter-title">Quick introduction to Calculus with Julia</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../references.html" class="sidebar-item-text sidebar-link">References</a>
</div>
</li>
</ul>
</div>
</nav>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#surfaces-of-revolution" id="toc-surfaces-of-revolution" class="nav-link active" data-scroll-target="#surfaces-of-revolution"> <span class="header-section-number">47.1</span> Surfaces of revolution</a>
<ul class="collapse">
<li><a href="#plotting-surfaces-of-revolution" id="toc-plotting-surfaces-of-revolution" class="nav-link" data-scroll-target="#plotting-surfaces-of-revolution"> <span class="header-section-number">47.1.1</span> Plotting surfaces of revolution</a></li>
</ul></li>
<li><a href="#the-first-theorem-of-pappus" id="toc-the-first-theorem-of-pappus" class="nav-link" data-scroll-target="#the-first-theorem-of-pappus"> <span class="header-section-number">47.2</span> The first Theorem of Pappus</a></li>
<li><a href="#questions" id="toc-questions" class="nav-link" data-scroll-target="#questions"> <span class="header-section-number">47.3</span> Questions</a></li>
</ul>
<div class="toc-actions"><div><i class="bi bi-github"></i></div><div class="action-links"><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/edit/main/quarto/integrals/surface_area.qmd" class="toc-action">Edit this page</a></p><p><a href="https://github.com/jverzani/CalculusWithJuliaNotes.jl/issues/new" class="toc-action">Report an issue</a></p></div></div></nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title d-none d-lg-block"><span class="chapter-number">47</span>&nbsp; <span class="chapter-title">Surface Area</span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<p>This section uses these add-on packages:</p>
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">CalculusWithJulia</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">Plots</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">SymPy</span></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="im">using</span> <span class="bu">QuadGK</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<hr>
<section id="surfaces-of-revolution" class="level2" data-number="47.1">
<h2 data-number="47.1" class="anchored" data-anchor-id="surfaces-of-revolution"><span class="header-section-number">47.1</span> Surfaces of revolution</h2>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="../integrals/figures/gehry-hendrix.jpg" class="img-fluid figure-img"></p>
<p></p><figcaption class="figure-caption">The exterior of the Jimi Hendrix Museum in Seattle has the signature style of its architect Frank Gehry. The surface is comprised of patches. A general method to find the amount of material to cover the surface - the surface area - might be to add up the area of <em>each</em> of the patches. However, in this section we will see for surfaces of revolution, there is an easier way. (Photo credit to <a href="http://firepanjewellery.com/">firepanjewellery</a>.)</figcaption><p></p>
</figure>
</div>
<blockquote class="blockquote">
<p>The surface area generated by rotating the graph of <span class="math inline">\(f(x)\)</span> between <span class="math inline">\(a\)</span> and <span class="math inline">\(b\)</span> about the <span class="math inline">\(x\)</span>-axis is given by the integral</p>
<p><span class="math display">\[
\int_a^b 2\pi f(x) \cdot \sqrt{1 + f'(x)^2} dx.
\]</span></p>
<p>If the curve is parameterized by <span class="math inline">\((g(t), f(t))\)</span> between <span class="math inline">\(a\)</span> and <span class="math inline">\(b\)</span> then the surface area is</p>
<p><span class="math display">\[
\int_a^b 2\pi f(t) \cdot \sqrt{g'(t)^2 + f'(t)^2} dx.
\]</span></p>
<p>These formulas do not add in the surface area of either of the ends.</p>
</blockquote>
<div class="cell" data-hold="true" data-execution_count="5">
<div class="cell-output cell-output-display" data-execution_count="6">
<p><img src="surface_area_files/figure-html/cell-6-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>The above figure shows a cone (the line <span class="math inline">\(y=x\)</span>) presented as a surface of revolution about the <span class="math inline">\(x\)</span>-axis.</p>
<p>To see why this formula is as it is, we look at the parameterized case, the first one being a special instance with <span class="math inline">\(g(t) =t\)</span>.</p>
<p>Let a partition of <span class="math inline">\([a,b]\)</span> be given by <span class="math inline">\(a = t_0 &lt; t_1 &lt; t_2 &lt; \cdots &lt; t_n =b\)</span>. This breaks the curve into a collection of line segments. Consider the line segment connecting <span class="math inline">\((g(t_{i-1}), f(t_{i-1}))\)</span> to <span class="math inline">\((g(t_i), f(t_i))\)</span>. Rotating this around the <span class="math inline">\(x\)</span> axis will generate something approximating a disc, but in reality will be the frustum of a cone. What will be the surface area?</p>
<p>Consider a right-circular cone parameterized by an angle <span class="math inline">\(\theta\)</span> and the largest radius <span class="math inline">\(r\)</span> (so that the height satisfies <span class="math inline">\(r/h=\tan(\theta)\)</span>). If this cone were made of paper, cut up a side, and layed out flat, it would form a sector of a circle, whose area would be <span class="math inline">\(R\gamma\)</span> where <span class="math inline">\(R\)</span> is the radius of the circle (also the side length of our cone), and <span class="math inline">\(\gamma\)</span> an angle that we can figure out from <span class="math inline">\(r\)</span> and <span class="math inline">\(\theta\)</span>. To do this, we note that the arc length of the circles edge is <span class="math inline">\(R\gamma\)</span> and also the circumference of the bottom of the cone so <span class="math inline">\(R\gamma = 2\pi r\)</span>. With all this, we can solve to get <span class="math inline">\(A = \pi r^2/\sin(\theta)\)</span>. But we have a frustum of a cone with radii <span class="math inline">\(r_0\)</span> and <span class="math inline">\(r_1\)</span>, so the surface area is a difference: <span class="math inline">\(A = \pi (r_1^2 - r_0^2) /\sin(\theta)\)</span>.</p>
<p>Relating this to our values in terms of <span class="math inline">\(f\)</span> and <span class="math inline">\(g\)</span>, we have <span class="math inline">\(r_1=f(t_i)\)</span>, <span class="math inline">\(r_0 = f(t_{i-1})\)</span>, and <span class="math inline">\(\sin(\theta) = \Delta f / \sqrt{(\Delta g)^2 + (\Delta f)^2}\)</span>, where <span class="math inline">\(\Delta f = f(t_i) - f(t_{i-1})\)</span> and similarly for <span class="math inline">\(\Delta g\)</span>.</p>
<p>Putting this altogether we get that the surface area generarated by rotating the line segment around the <span class="math inline">\(x\)</span> axis is</p>
<p><span class="math display">\[
\text{sa}_i = \pi (f(t_i)^2 - f(t_{i-1})^2) \cdot \sqrt{(\Delta g)^2 + (\Delta f)^2} / \Delta f =
\pi (f(t_i) + f(t_{i-1})) \cdot \sqrt{(\Delta g)^2 + (\Delta f)^2}.
\]</span></p>
<p>(This is <span class="math inline">\(2 \pi\)</span> times the average radius times the slant height.)</p>
<p>As was done in the derivation of the formula for arc length, these pieces are multiplied both top and bottom by <span class="math inline">\(\Delta t = t_{i} - t_{i-1}\)</span>. Carrying the bottom inside the square root and noting that by the mean value theorem <span class="math inline">\(\Delta g/\Delta t = g(\xi)\)</span> and <span class="math inline">\(\Delta f/\Delta t = f(\psi)\)</span> for some <span class="math inline">\(\xi\)</span> and <span class="math inline">\(\psi\)</span> in <span class="math inline">\([t_{i-1}, t_i]\)</span>, this becomes:</p>
<p><span class="math display">\[
\text{sa}_i = \pi (f(t_i) + f(t_{i-1})) \cdot \sqrt{(g'(\xi))^2 + (f'(\psi))^2} \cdot (t_i - t_{i-1}).
\]</span></p>
<p>Adding these up, <span class="math inline">\(\text{sa}_1 + \text{sa}_2 + \cdots + \text{sa}_n\)</span>, we get a Riemann sum approximation to the integral</p>
<p><span class="math display">\[
\text{SA} = \int_a^b 2\pi f(t) \sqrt{g'(t)^2 + f'(t)^2} dt.
\]</span></p>
<p>If we assume integrability of the integrand, then as our partition size goes to zero, this approximate surface area converges to the value given by the limit. (As with arc length, this needs a technical adjustment to the Riemann integral theorem as here we are evaluating the integrand function at four points (<span class="math inline">\(t_i\)</span>, <span class="math inline">\(t_{i-1}\)</span>, <span class="math inline">\(\xi\)</span> and <span class="math inline">\(\psi\)</span>) and not just at some <span class="math inline">\(c_i\)</span>.</p>
<div class="cell" data-cache="true" data-hold="true" data-execution_count="6">
<div class="cell-output cell-output-display" data-execution_count="7">
<div class="d-flex justify-content-center"> <figure class="figure"> <img src="" class="card-img-top figure-img" alt="A Figure">
<figcaption class="figure-caption"><div class="markdown"><p>Surface of revolution of \(f(x) = 2 - x^2\) about the \(y\) axis. The lines segments are the images of rotating the secant line connecting \((1/2, f(1/2))\) and \((3/4, f(3/4))\). These trace out the frustum of a cone which approximates the corresponding surface area of the surface of revolution. In the limit, this approximation becomes exact and a formula for the surface area of surfaces of revolution can be used to compute the value.</p>
</div> </figcaption>
</figure>
</div>
</div>
</div>
<section id="examples" class="level4">
<h4 class="anchored" data-anchor-id="examples">Examples</h4>
<p>Lets see that the surface area of an open cone follows from this formula, even though we just saw how to get this value.</p>
<p>A cone be be envisioned as rotating the function <span class="math inline">\(f(x) = x\tan(\theta)\)</span> between <span class="math inline">\(0\)</span> and <span class="math inline">\(h\)</span> around the <span class="math inline">\(x\)</span> axis. This integral yields the surface area:</p>
<p><span class="math display">\[
\begin{align*}
\int_0^h 2\pi f(x) \sqrt{1 + f'(x)^2}dx
&amp;= \int_0^h 2\pi x \tan(\theta) \sqrt{1 + \tan(\theta)^2}dx \\
&amp;= (2\pi\tan(\theta)\sqrt{1 + \tan(\theta)^2} x^2/2 \big|_0^h \\
&amp;= \pi \tan(\theta) \sec(\theta) h^2 \\
&amp;= \pi r^2 / \sin(\theta).
\end{align*}
\]</span></p>
<p>(There are many ways to express this, we used <span class="math inline">\(r\)</span> and <span class="math inline">\(\theta\)</span> to match the work above. If the cone is parameterized by a height <span class="math inline">\(h\)</span> and radius <span class="math inline">\(r\)</span>, then the surface area of the sides is <span class="math inline">\(\pi r\sqrt{h^2 + r^2}\)</span>. If the base is included, there is an additional <span class="math inline">\(\pi r^2\)</span> term.)</p>
<section id="example" class="level5">
<h5 class="anchored" data-anchor-id="example">Example</h5>
<p>Let the graph of <span class="math inline">\(f(x) = x^2\)</span> from <span class="math inline">\(x=0\)</span> to <span class="math inline">\(x=1\)</span> be rotated around the <span class="math inline">\(x\)</span> axis. What is the resulting surface area generated?</p>
<p><span class="math display">\[
\text{SA} = \int_a^b 2\pi f(x) \sqrt{1 + f'(x)^2}dx = \int_0^1 2\pi x^2 \sqrt{1 + (2x)^2} dx.
\]</span></p>
<p>This integral is done by a trig substitution, but gets involved. We let <code>SymPy</code> do it:</p>
<div class="cell" data-execution_count="7">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="pp">@syms</span> x</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>F <span class="op">=</span> <span class="fu">integrate</span>(<span class="fl">2</span> <span class="op">*</span> PI <span class="op">*</span> x<span class="op">^</span><span class="fl">2</span> <span class="op">*</span> <span class="fu">sqrt</span>(<span class="fl">1</span> <span class="op">+</span> (<span class="fl">2</span>x)<span class="op">^</span><span class="fl">2</span>), x)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="8">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
2 \pi \left(\frac{x^{5}}{\sqrt{4 x^{2} + 1}} + \frac{3 x^{3}}{8 \sqrt{4 x^{2} + 1}} + \frac{x}{32 \sqrt{4 x^{2} + 1}} - \frac{\operatorname{asinh}{\left(2 x \right)}}{64}\right)
\]
</span>
</div>
</div>
<p>We show <code>F</code>, only to demonstrate that indeed the integral is a bit involved. The actual surface area follows from a <em>definite</em> integral, which we get through the fundamental theorem of calculus:</p>
<div class="cell" data-execution_count="8">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">F</span>(<span class="fl">1</span>) <span class="op">-</span> <span class="fu">F</span>(<span class="fl">0</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="9">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
2 \pi \left(- \frac{\operatorname{asinh}{\left(2 \right)}}{64} + \frac{9 \sqrt{5}}{32}\right)
\]
</span>
</div>
</div>
</section>
</section>
<section id="plotting-surfaces-of-revolution" class="level3" data-number="47.1.1">
<h3 data-number="47.1.1" class="anchored" data-anchor-id="plotting-surfaces-of-revolution"><span class="header-section-number">47.1.1</span> Plotting surfaces of revolution</h3>
<p>The commands to plot a surface of revolution will be described more clearly later; for now we present them as simply a pattern to be followed in case plots are desired. Suppose the curve in the <span class="math inline">\(x-y\)</span> plane is given parametrically by <span class="math inline">\((g(u), f(u))\)</span> for <span class="math inline">\(a \leq u \leq b\)</span>.</p>
<p>To be concrete, we parameterize the circle centered at <span class="math inline">\((6,0)\)</span> with radius <span class="math inline">\(2\)</span> by:</p>
<div class="cell" data-execution_count="9">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">g</span>(u) <span class="op">=</span> <span class="fl">6</span> <span class="op">+</span> <span class="fl">2</span><span class="fu">sin</span>(u)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(u) <span class="op">=</span> <span class="fl">2</span><span class="fu">cos</span>(u)</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>a, b <span class="op">=</span> <span class="fl">0</span>, <span class="fl">2</span>pi</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="10">
<pre><code>(0, 6.283185307179586)</code></pre>
</div>
</div>
<p>The plot of this curve is:</p>
<div class="cell" data-hold="true" data-execution_count="10">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>us <span class="op">=</span> <span class="fu">range</span>(a, b, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(<span class="fu">g</span>.(us), <span class="fu">f</span>.(us), xlims<span class="op">=</span>(<span class="op">-</span><span class="fl">0.5</span>, <span class="fl">9</span>), aspect_ratio<span class="op">=:</span>equal, legend<span class="op">=</span><span class="cn">false</span>)</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot!</span>([<span class="fl">0</span>,<span class="fl">0</span>],[<span class="op">-</span><span class="fl">3</span>,<span class="fl">3</span>], color<span class="op">=:</span>red, linewidth<span class="op">=</span><span class="fl">5</span>) <span class="co"># y axis emphasis</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot!</span>([<span class="fl">3</span>,<span class="fl">9</span>], [<span class="fl">0</span>,<span class="fl">0</span>], color<span class="op">=:</span>green, linewidth<span class="op">=</span><span class="fl">5</span>) <span class="co"># x axis emphasis</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="11">
<p><img src="surface_area_files/figure-html/cell-11-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>Though parametric plots have a convenience constructor, <code>plot(g, f, a, b)</code>, we constructed the points with <code>Julia</code>s broadcasting notation, as we will need to do for a surface of revolution. The <code>xlims</code> are adjusted to show the <span class="math inline">\(y\)</span> axis, which is emphasized with a layered line. The line is drawn by specifying two points, <span class="math inline">\((x_0, y_0)\)</span> and <span class="math inline">\((x_1, y_1)\)</span> in the form <code>[x0,x1]</code> and <code>[y0,y1]</code>.</p>
<p>Now, to rotate this about the <span class="math inline">\(y\)</span> axis, creating a surface plot, we have the following pattern:</p>
<div class="cell" data-execution_count="11">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">S</span>(u,v) <span class="op">=</span> [<span class="fu">g</span>(u)<span class="fu">*cos</span>(v), <span class="fu">g</span>(u)<span class="fu">*sin</span>(v), <span class="fu">f</span>(u)]</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>us <span class="op">=</span> <span class="fu">range</span>(a, b, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>vs <span class="op">=</span> <span class="fu">range</span>(<span class="fl">0</span>, <span class="fl">2</span>pi, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>ws <span class="op">=</span> <span class="fu">unzip</span>(<span class="fu">S</span>.(us, vs<span class="op">'</span>)) <span class="co"># reorganize data</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="fu">surface</span>(ws<span class="op">...</span>, zlims<span class="op">=</span>(<span class="op">-</span><span class="fl">6</span>,<span class="fl">6</span>), legend<span class="op">=</span><span class="cn">false</span>)</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot!</span>([<span class="fl">0</span>,<span class="fl">0</span>], [<span class="fl">0</span>,<span class="fl">0</span>], [<span class="op">-</span><span class="fl">3</span>,<span class="fl">3</span>], color<span class="op">=:</span>red, linewidth<span class="op">=</span><span class="fl">5</span>) <span class="co"># y axis emphasis</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="12">
<p><img src="surface_area_files/figure-html/cell-12-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>The <code>unzip</code> function is not part of base <code>Julia</code>, rather part of <code>CalculusWithJulia</code>. This function rearranges data into a form consumable by the plotting methods like <code>surface</code>. In this case, the result of <code>S.(us,vs')</code> is a grid (matrix) of points, the result of <code>unzip</code> is three grids of values, one for the <span class="math inline">\(x\)</span> values, one for the <span class="math inline">\(y\)</span> values, and one for the <span class="math inline">\(z\)</span> values. A manual adjustment to the <code>zlims</code> is used, as <code>aspect_ratio</code> does not have an effect with the <code>plotly()</code> backend and errors on 3d graphics with <code>pyplot()</code>.</p>
<p>To rotate this about the <span class="math inline">\(x\)</span> axis, we have this pattern:</p>
<div class="cell" data-hold="true" data-execution_count="12">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">S</span>(u,v) <span class="op">=</span> [<span class="fu">g</span>(u), <span class="fu">f</span>(u)<span class="fu">*cos</span>(v), <span class="fu">f</span>(u)<span class="fu">*sin</span>(v)]</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>us <span class="op">=</span> <span class="fu">range</span>(a, b, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>vs <span class="op">=</span> <span class="fu">range</span>(<span class="fl">0</span>, <span class="fl">2</span>pi, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>ws <span class="op">=</span> <span class="fu">unzip</span>(<span class="fu">S</span>.(us,vs<span class="op">'</span>))</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="fu">surface</span>(ws<span class="op">...</span>, legend<span class="op">=</span><span class="cn">false</span>)</span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">plot!</span>([<span class="fl">3</span>,<span class="fl">9</span>], [<span class="fl">0</span>,<span class="fl">0</span>],[<span class="fl">0</span>,<span class="fl">0</span>], color<span class="op">=:</span>green, linewidth<span class="op">=</span><span class="fl">5</span>) <span class="co"># x axis emphasis</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="13">
<p><img src="surface_area_files/figure-html/cell-13-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>The above pattern covers the case of rotating the graph of a function <span class="math inline">\(f(x)\)</span> of <span class="math inline">\(a,b\)</span> by taking <span class="math inline">\(g(t)=t\)</span>.</p>
<section id="example-1" class="level5">
<h5 class="anchored" data-anchor-id="example-1">Example</h5>
<p>Rotate the graph of <span class="math inline">\(x^x\)</span> from <span class="math inline">\(0\)</span> to <span class="math inline">\(3/2\)</span> around the <span class="math inline">\(x\)</span> axis. What is the surface area generated?</p>
<p>We work numerically for this one, as no antiderivative is forthcoming. Recall, the accompanying <code>CalculusWithJulia</code> package defines <code>f'</code> to return the automatic derivative through the <code>ForwardDiff</code> package.</p>
<div class="cell" data-hold="true" data-execution_count="13">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(x) <span class="op">=</span> x<span class="op">^</span>x</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>a, b <span class="op">=</span> <span class="fl">0</span>, <span class="fl">3</span><span class="op">/</span><span class="fl">2</span></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>val, _ <span class="op">=</span> <span class="fu">quadgk</span>(x <span class="op">-&gt;</span> <span class="fl">2</span>pi <span class="op">*</span> <span class="fu">f</span>(x) <span class="op">*</span> <span class="fu">sqrt</span>(<span class="fl">1</span> <span class="op">+</span> f<span class="op">'</span>(x)<span class="op">^</span><span class="fl">2</span>), a, b)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>val</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="14">
<pre><code>14.934256764843937</code></pre>
</div>
</div>
<p>(The function is not defined at <span class="math inline">\(x=0\)</span> mathematically, but is on the computer to be <span class="math inline">\(1\)</span>, the limiting value. Even were this not the case, the <code>quadgk</code> function doesnt evaluate the function at the points <code>a</code> and <code>b</code> that are specified.)</p>
<div class="cell" data-hold="true" data-execution_count="14">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">g</span>(u) <span class="op">=</span> u</span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(u) <span class="op">=</span> u<span class="op">^</span>u</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">S</span>(u,v) <span class="op">=</span> [<span class="fu">g</span>(u)<span class="fu">*cos</span>(v), <span class="fu">g</span>(u)<span class="fu">*sin</span>(v), <span class="fu">f</span>(u)]</span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a>us <span class="op">=</span> <span class="fu">range</span>(<span class="fl">0</span>, <span class="fl">3</span><span class="op">/</span><span class="fl">2</span>, length<span class="op">=</span><span class="fl">100</span>)</span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>vs <span class="op">=</span> <span class="fu">range</span>(<span class="fl">0</span>, <span class="cn">pi</span>, length<span class="op">=</span><span class="fl">100</span>) <span class="co"># not 2pi (to see inside)</span></span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>ws <span class="op">=</span> <span class="fu">unzip</span>(<span class="fu">S</span>.(us,vs<span class="op">'</span>))</span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="fu">surface</span>(ws<span class="op">...</span>, alpha<span class="op">=</span><span class="fl">0.75</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="15">
<p><img src="surface_area_files/figure-html/cell-15-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>We compare this answer to that of the frustum of a cone with radii <span class="math inline">\(1\)</span> and <span class="math inline">\((3/2)^2\)</span>, formed by rotating the line segment connecting <span class="math inline">\((0,f(0))\)</span> with <span class="math inline">\((3/2,f(3/2))\)</span>. From looking at the graph of the surface, these values should be comparable. The surface area of the cone part is <span class="math inline">\(\pi (r_1^2 + r_0^2) / \sin(\theta) = \pi (r_1 + r_0) \cdot \sqrt{(\Delta h)^2 + (r_1-r_0)^2}\)</span>.</p>
<div class="cell" data-hold="true" data-execution_count="15">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(x) <span class="op">=</span> x<span class="op">^</span>x</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>r0, r1 <span class="op">=</span> <span class="fu">f</span>(<span class="fl">0</span>), <span class="fu">f</span>(<span class="fl">3</span><span class="op">/</span><span class="fl">2</span>)</span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="cn">pi</span> <span class="op">*</span> (r1 <span class="op">+</span> r0) <span class="op">*</span> <span class="fu">sqrt</span>((<span class="fl">3</span><span class="op">/</span><span class="fl">2</span>)<span class="op">^</span><span class="fl">2</span> <span class="op">+</span> (r1<span class="op">-</span>r0)<span class="op">^</span><span class="fl">2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="16">
<pre><code>15.310680925915081</code></pre>
</div>
</div>
</section>
<section id="example-2" class="level5">
<h5 class="anchored" data-anchor-id="example-2">Example</h5>
<p>What is the surface area generated by Gabriels Horn, the solid formed by rotating <span class="math inline">\(1/x\)</span> for <span class="math inline">\(x \geq 1\)</span> around the <span class="math inline">\(x\)</span> axis?</p>
<p><span class="math display">\[
\text{SA} = \int_a^b 2\pi f(x) \sqrt{1 + f'(x)^2}dx =
\lim_{M \rightarrow \infty} \int_1^M 2\pi \frac{1}{x} \sqrt{1 + (-1/x^2)^2} dx.
\]</span></p>
<p>We do this with <code>SymPy</code>:</p>
<div class="cell" data-execution_count="16">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="pp">@syms</span> M</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>ex <span class="op">=</span> <span class="fu">integrate</span>(<span class="fl">2</span>PI <span class="op">*</span> (<span class="fl">1</span><span class="op">/</span>x) <span class="op">*</span> <span class="fu">sqrt</span>(<span class="fl">1</span> <span class="op">+</span> (<span class="op">-</span><span class="fl">1</span><span class="op">/</span>x)<span class="op">^</span><span class="fl">2</span>), (x, <span class="fl">1</span>, M))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="17">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
2 \pi \left(- \frac{M}{\sqrt{M^{2} + 1}} + \operatorname{asinh}{\left(M \right)} - \frac{1}{M \sqrt{M^{2} + 1}}\right) - 2 \pi \left(- \sqrt{2} + \log{\left(1 + \sqrt{2} \right)}\right)
\]
</span>
</div>
</div>
<p>The limit as <span class="math inline">\(M\)</span> gets large is of interest. The only term that might get out of hand is <code>asinh(M)</code>. We check its limit:</p>
<div class="cell" data-execution_count="17">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">limit</span>(<span class="fu">asinh</span>(M), M <span class="op">=&gt;</span> oo)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="18">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
\infty
\]
</span>
</div>
</div>
<p>So indeed it does. There is nothing to balance this out, so the integral will be infinite, as this shows:</p>
<div class="cell" data-execution_count="18">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">limit</span>(ex, M <span class="op">=&gt;</span> oo)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="19">
<span class="math-left-align" style="padding-left: 4px; width:0; float:left;">
\[
\infty
\]
</span>
</div>
</div>
<p>This figure would have infinite surface, were it possible to actually construct an infinitely long solid. (But it has been shown to have <em>finite</em> volume.)</p>
</section>
<section id="example-3" class="level5">
<h5 class="anchored" data-anchor-id="example-3">Example</h5>
<p>The curve described parametrically by <span class="math inline">\(g(t) = 2(1 + \cos(t))\cos(t)\)</span> and <span class="math inline">\(f(t) = 2(1 + \cos(t))\sin(t)\)</span> from <span class="math inline">\(0\)</span> to <span class="math inline">\(\pi\)</span> is rotated about the <span class="math inline">\(x\)</span> axis. Find the resulting surface area.</p>
<p>The graph shows half a heart, the resulting area will resemble an apple.</p>
<div class="cell" data-hold="true" data-execution_count="19">
<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode julia code-with-copy"><code class="sourceCode julia"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">g</span>(t) <span class="op">=</span> <span class="fl">2</span>(<span class="fl">1</span> <span class="op">+</span> <span class="fu">cos</span>(t)) <span class="op">*</span> <span class="fu">cos</span>(t)</span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">f</span>(t) <span class="op">=</span> <span class="fl">2</span>(<span class="fl">1</span> <span class="op">+</span> <span class="fu">cos</span>(t)) <span class="op">*</span> <span class="fu">sin</span>(t)</span>
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(g, f, <span class="fl">0</span>, <span class="fl">1</span>pi)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="20">
<p><img src="surface_area_files/figure-html/cell-20-output-1.svg" class="img-fluid"></p>
</div>
</div>
<p>The integrand simplifies to <span class="math inline">\(8\sqrt{2}\pi \sin(t) (1 + \cos(t))^{3/2}\)</span>. This lends itself to <span class="math inline">\(u\)</span>-substitution with <span class="math inline">\(u=\cos(t)\)</span>.</p>
<p><span class="math display">\[
\begin{align*}
\int_0^\pi 8\sqrt{2}\pi \sin(t) (1 + \cos(t))^{3/2}
&amp;= 8\sqrt{2}\pi \int_1^{-1} (1 + u)^{3/2} (-1) du\\
&amp;= 8\sqrt{2}\pi (2/5) (1+u)^{5/2} \big|_{-1}^1\\
&amp;= 8\sqrt{2}\pi (2/5) 2^{5/2} = \frac{2^7 \pi}{5}.
\end{align*}
\]</span></p>
</section>
</section>
</section>
<section id="the-first-theorem-of-pappus" class="level2" data-number="47.2">
<h2 data-number="47.2" class="anchored" data-anchor-id="the-first-theorem-of-pappus"><span class="header-section-number">47.2</span> The first Theorem of Pappus</h2>
<p>The <a href="http://tinyurl.com/le3lvb9">first</a> theorem of Pappus provides a simpler means to compute the surface area if the distance the centroid is from the axis (<span class="math inline">\(\rho\)</span>) and the arc length of the curve (<span class="math inline">\(L\)</span>) are both known. In that case, the surface area satisfies:</p>
<p><span class="math display">\[
\text{SA} = 2 \pi \rho L
\]</span></p>
<p>That is, the surface area is simply the circumference of the circle traced out by the centroid of the curve times the length of the curve - the distances rotated are collapsed to that of just the centroid.</p>
<section id="example-4" class="level5">
<h5 class="anchored" data-anchor-id="example-4">Example</h5>
<p>The surface area of of an open cone can be computed, as the arc length is <span class="math inline">\(\sqrt{h^2 + r^2}\)</span> and the centroid of the line is a distance <span class="math inline">\(r/2\)</span> from the axis. This gives SA<span class="math inline">\(=2\pi (r/2) \sqrt{h^2 + r^2} = \pi r \sqrt{h^2 + r^2}\)</span>.</p>
</section>
<section id="example-5" class="level5">
<h5 class="anchored" data-anchor-id="example-5">Example</h5>
<p>We can get the surface area of a torus from this formula.</p>
<p>The torus is found by rotating the curve <span class="math inline">\((x-b)^2 + y^2 = a^2\)</span> about the <span class="math inline">\(y\)</span> axis. The centroid is <span class="math inline">\(b\)</span>, the arc length <span class="math inline">\(2\pi a\)</span>, so the surface area is <span class="math inline">\(2\pi (b) (2\pi a) = 4\pi^2 a b\)</span>.</p>
<p>A torus with <span class="math inline">\(a=2\)</span> and <span class="math inline">\(b=6\)</span></p>
<div class="cell" data-hold="true" data-execution_count="20">
<div class="cell-output cell-output-display" data-execution_count="21">
<p><img src="surface_area_files/figure-html/cell-21-output-1.svg" class="img-fluid"></p>
</div>
</div>
</section>
<section id="example-6" class="level5">
<h5 class="anchored" data-anchor-id="example-6">Example</h5>
<p>The surface area of sphere will be SA<span class="math inline">\(=2\pi \rho (\pi r) = 2 \pi^2 r \cdot \rho\)</span>. What is <span class="math inline">\(\rho\)</span>? The centroid of an arc formula can be derived in a manner similar to that of the centroid of a region. The formulas are:</p>
<p><span class="math display">\[
\begin{align}
\text{cm}_x &amp;= \frac{1}{L} \int_a^b g(t) \sqrt{g'(t)^2 + f'(t)^2} dt\\
\text{cm}_y &amp;= \frac{1}{L} \int_a^b f(t) \sqrt{g'(t)^2 + f'(t)^2} dt.
\end{align}
\]</span></p>
<p>Here, <span class="math inline">\(L\)</span> is the arc length of the curve.</p>
<p>For the sphere parameterized by <span class="math inline">\(g(t) = r \cos(t)\)</span>, <span class="math inline">\(f(t) = r\sin(t)\)</span>, we get that these become</p>
<p><span class="math display">\[
\text{cm}_x = \frac{1}{L}\int_0^\pi r\cos(t) \sqrt{r^2(\sin(t)^2 + \cos(t)^2)} dt = \frac{1}{L}r^2 \int_0^\pi \cos(t) = 0.
\]</span></p>
<p><span class="math display">\[
\text{cm}_y = \frac{1}{L}\int_0^\pi r\sin(t) \sqrt{r^2(\sin(t)^2 + \cos(t)^2)} dt = \frac{1}{L}r^2 \int_0^\pi \sin(t) = \frac{1}{\pi r} r^2 \cdot 2 = \frac{2r}{\pi}.
\]</span></p>
<p>Combining this, we see that the surface area of a sphere is <span class="math inline">\(2 \pi^2 r (2r/\pi) = 4\pi r^2\)</span>, by Pappus Theorem.</p>
</section>
</section>
<section id="questions" class="level2" data-number="47.3">
<h2 data-number="47.3" class="anchored" data-anchor-id="questions"><span class="header-section-number">47.3</span> Questions</h2>
<section id="questions-1" class="level5">
<h5 class="anchored" data-anchor-id="questions-1">Questions</h5>
<p>The graph of <span class="math inline">\(f(x) = \sin(x)\)</span> from <span class="math inline">\(0\)</span> to <span class="math inline">\(\pi\)</span> is rotated around the <span class="math inline">\(x\)</span> axis. After a <span class="math inline">\(u\)</span>-substitution, what integral would give the surface area generated?</p>
<div class="cell" data-hold="true" data-execution_count="21">
<div class="cell-output cell-output-display" data-execution_count="22">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="12222821778415219289" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_12222821778415219289">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_12222821778415219289_1">
<input class="form-check-input" type="radio" name="radio_12222821778415219289" id="radio_12222821778415219289_1" value="1">
<span class="label-body px-1">
\(-\int_1^{_1} 2\pi u^2 \sqrt{1 + u} du\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_12222821778415219289_2">
<input class="form-check-input" type="radio" name="radio_12222821778415219289" id="radio_12222821778415219289_2" value="2">
<span class="label-body px-1">
\(-\int_1^{_1} 2\pi u \sqrt{1 + u^2} du\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_12222821778415219289_3">
<input class="form-check-input" type="radio" name="radio_12222821778415219289" id="radio_12222821778415219289_3" value="3">
<span class="label-body px-1">
\(-\int_1^{-1} 2\pi \sqrt{1 + u^2} du\)
</span>
</label>
</div>
</div>
</div>
<div id="12222821778415219289_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_12222821778415219289"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 3;
var msgBox = document.getElementById('12222821778415219289_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_12222821778415219289")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_12222821778415219289")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
<p>Though the integral can be computed by hand, give a numeric value.</p>
<div class="cell" data-hold="true" data-execution_count="22">
<div class="cell-output cell-output-display" data-execution_count="23">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="5732042234612353131" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_5732042234612353131">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="5732042234612353131" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="5732042234612353131_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("5732042234612353131").addEventListener("change", function() {
var correct = (Math.abs(this.value - 14.4235994484141) <= 0.001);
var msgBox = document.getElementById('5732042234612353131_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_5732042234612353131")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_5732042234612353131")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="questions-2" class="level5">
<h5 class="anchored" data-anchor-id="questions-2">Questions</h5>
<p>The graph of <span class="math inline">\(f(x) = \sqrt{x}\)</span> from <span class="math inline">\(0\)</span> to <span class="math inline">\(4\)</span> is rotated around the <span class="math inline">\(x\)</span> axis. Numerically find the surface area generated?</p>
<div class="cell" data-hold="true" data-execution_count="23">
<div class="cell-output cell-output-display" data-execution_count="24">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="12278343873028348651" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_12278343873028348651">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="12278343873028348651" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="12278343873028348651_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("12278343873028348651").addEventListener("change", function() {
var correct = (Math.abs(this.value - 36.176903197411335) <= 0.001);
var msgBox = document.getElementById('12278343873028348651_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_12278343873028348651")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_12278343873028348651")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="questions-3" class="level5">
<h5 class="anchored" data-anchor-id="questions-3">Questions</h5>
<p>Find the surface area generated by revolving the graph of the function <span class="math inline">\(f(x) = x^3/9\)</span> from <span class="math inline">\(x=0\)</span> to <span class="math inline">\(x=2\)</span> around the <span class="math inline">\(x\)</span> axis. This can be done by hand or numerically.</p>
<div class="cell" data-hold="true" data-execution_count="24">
<div class="cell-output cell-output-display" data-execution_count="25">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="13366711452522980756" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_13366711452522980756">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="13366711452522980756" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="13366711452522980756_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("13366711452522980756").addEventListener("change", function() {
var correct = (Math.abs(this.value - 3.80093925989871) <= 0.001);
var msgBox = document.getElementById('13366711452522980756_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_13366711452522980756")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_13366711452522980756")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="questions-4" class="level5">
<h5 class="anchored" data-anchor-id="questions-4">Questions</h5>
<p>(From Stewart.) If a loaf of bread is in the form of a sphere of radius <span class="math inline">\(1\)</span>, the amount of crust for a slice depends on the width, but not where in the loaf it is sliced.</p>
<p>That is this integral with <span class="math inline">\(f(x) = \sqrt{1 - x^2}\)</span> and <span class="math inline">\(u, u+h\)</span> in <span class="math inline">\([-1,1]\)</span> does not depend on <span class="math inline">\(u\)</span>:</p>
<p><span class="math display">\[
A = \int_u^{u+h} 2\pi f(x) \sqrt{1 + f'(x)^2} dx.
\]</span></p>
<p>If we let <span class="math inline">\(f(x) = y\)</span> then <span class="math inline">\(f'(x) = x/y\)</span>. With this, what does the integral above come down to after cancellations:</p>
<div class="cell" data-hold="true" data-execution_count="25">
<div class="cell-output cell-output-display" data-execution_count="26">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="7433979781027977925" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_7433979781027977925">
<div style="padding-top: 5px">
<div class="form-check">
<label class="form-check-label" for="radio_7433979781027977925_1">
<input class="form-check-input" type="radio" name="radio_7433979781027977925" id="radio_7433979781027977925_1" value="1">
<span class="label-body px-1">
\(\int_u^{u_h} 2\pi x dx\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_7433979781027977925_2">
<input class="form-check-input" type="radio" name="radio_7433979781027977925" id="radio_7433979781027977925_2" value="2">
<span class="label-body px-1">
\(\int_u^{u+h} 2\pi dx\)
</span>
</label>
</div>
<div class="form-check">
<label class="form-check-label" for="radio_7433979781027977925_3">
<input class="form-check-input" type="radio" name="radio_7433979781027977925" id="radio_7433979781027977925_3" value="3">
<span class="label-body px-1">
\(\int_u^{u_h} 2\pi y dx\)
</span>
</label>
</div>
</div>
</div>
<div id="7433979781027977925_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.querySelectorAll('input[name="radio_7433979781027977925"]').forEach(function(rb) {
rb.addEventListener("change", function() {
var correct = rb.value == 2;
var msgBox = document.getElementById('7433979781027977925_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_7433979781027977925")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_7433979781027977925")
if (explanation != null) {
explanation.style.display = "block";
}
}
})});
</script>
</div>
</div>
</section>
<section id="questions-5" class="level5">
<h5 class="anchored" data-anchor-id="questions-5">Questions</h5>
<p>Find the surface area of the dome of sphere generated by rotating the the curve generated by <span class="math inline">\(g(t) = \cos(t)\)</span> and <span class="math inline">\(f(t) = \sin(t)\)</span> for <span class="math inline">\(t\)</span> in <span class="math inline">\(0\)</span> to <span class="math inline">\(\pi/6\)</span>.</p>
<p>Numerically find the value.</p>
<div class="cell" data-hold="true" data-execution_count="26">
<div class="cell-output cell-output-display" data-execution_count="27">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="5936297785034541557" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_5936297785034541557">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="5936297785034541557" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="5936297785034541557_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("5936297785034541557").addEventListener("change", function() {
var correct = (Math.abs(this.value - 1.84030236902122) <= 0.001);
var msgBox = document.getElementById('5936297785034541557_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_5936297785034541557")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_5936297785034541557")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="questions-6" class="level5">
<h5 class="anchored" data-anchor-id="questions-6">Questions</h5>
<p>The <a href="http://www-history.mcs.st-and.ac.uk/Curves/Astroid.html">astroid</a> is parameterized by <span class="math inline">\(g(t) = a\cos(t)^3\)</span> and <span class="math inline">\(f(t) = a \sin(t)^3\)</span>. Let <span class="math inline">\(a=1\)</span> and rotate the curve from <span class="math inline">\(t=0\)</span> to <span class="math inline">\(t=\pi\)</span> around the <span class="math inline">\(x\)</span> axis. What is the surface area generated?</p>
<div class="cell" data-hold="true" data-execution_count="27">
<div class="cell-output cell-output-display" data-execution_count="28">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="8523825330831160546" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_8523825330831160546">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="8523825330831160546" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="8523825330831160546_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("8523825330831160546").addEventListener("change", function() {
var correct = (Math.abs(this.value - 0.5198686322531927) <= 0.001);
var msgBox = document.getElementById('8523825330831160546_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_8523825330831160546")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_8523825330831160546")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
<section id="questions-7" class="level5">
<h5 class="anchored" data-anchor-id="questions-7">Questions</h5>
<p>For the curve parameterized by <span class="math inline">\(g(t) = a\cos(t)^5\)</span> and <span class="math inline">\(f(t) = a \sin(t)^5\)</span>. Let <span class="math inline">\(a=1\)</span> and rotate the curve from <span class="math inline">\(t=0\)</span> to <span class="math inline">\(t=\pi\)</span> around the <span class="math inline">\(x\)</span> axis. Numerically find the surface area generated?</p>
<div class="cell" data-hold="true" data-execution_count="28">
<div class="cell-output cell-output-display" data-execution_count="29">
<form class="mx-2 my-3 mw-100" name="WeaveQuestion" data-id="7781721266046313942" data-controltype="">
<div class="form-group ">
<div class="controls">
<div class="form" id="controls_7781721266046313942">
<div style="padding-top: 5px">
<br>
<div class="input-group">
<input id="7781721266046313942" type="number" class="form-control" placeholder="Numeric answer">
</div>
</div>
</div>
<div id="7781721266046313942_message" style="padding-bottom: 15px"></div>
</div>
</div>
</form>
<script text="text/javascript">
document.getElementById("7781721266046313942").addEventListener("change", function() {
var correct = (Math.abs(this.value - 8.053360803100585) <= 0.001);
var msgBox = document.getElementById('7781721266046313942_message');
if(correct) {
msgBox.innerHTML = "<div class='pluto-output admonition note alert alert-success'><span> 👍&nbsp; Correct </span></div>";
var explanation = document.getElementById("explanation_7781721266046313942")
if (explanation != null) {
explanation.style.display = "none";
}
} else {
msgBox.innerHTML = "<div class='pluto-output admonition alert alert-danger'><span>👎&nbsp; Incorrect </span></div>";
var explanation = document.getElementById("explanation_7781721266046313942")
if (explanation != null) {
explanation.style.display = "block";
}
}
});
</script>
</div>
</div>
</section>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
setTimeout(function() {
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
let href = ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const cites = ref.parentNode.getAttribute('data-cites').split(' ');
tippyHover(ref, function() {
var popup = window.document.createElement('div');
cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// target, if specified
link.setAttribute("target", "_blank");
}
}
});
</script>
<nav class="page-navigation">
<div class="nav-page nav-page-previous">
<a href="../integrals/arc_length.html" class="pagination-link">
<i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">46</span>&nbsp; <span class="chapter-title">Arc length</span></span>
</a>
</div>
<div class="nav-page nav-page-next">
<a href="../ODEs/odes.html" class="pagination-link">
<span class="nav-page-text"><span class="chapter-number">48</span>&nbsp; <span class="chapter-title">ODEs</span></span> <i class="bi bi-arrow-right-short"></i>
</a>
</div>
</nav>
</div> <!-- /content -->
<footer class="footer">
<div class="nav-footer">
<div class="nav-footer-center">Copyright 2022, John Verzani</div>
</div>
</footer>
</body></html>