CalculusWithJuliaNotes.jl/quarto/integrals/twelve-qs.qmd
2024-06-07 13:07:09 -04:00

433 lines
9.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# A dozen minima for a parabola
This section uses these packages:
```{julia}
using SymPy
using Plots
plotly()
```
----
In the March 2003 issue of the College Mathematics Journal, Leon M Hall posed 12 questions related to the following figure:
```{julia}
#| echo: false
f(x) = x^2
fp(x) = 2x
a₀ = 7/8
q₀ = -a₀ - 1/(2a₀)
tangent(x) = f(a₀) + fp(a₀) * (x - a₀)
normal(x) = f(a₀) - (1 / fp(a₀)) * (x - a₀)
function make_plot(a₀=7/8, q₀=-a₀ - 1/2a₀)
plt = plot(; xlim=(-2,2), ylim=(-1, (1.5)^2),
xticks=nothing, yticks=nothing,
aspect_ratio=:equal, border=:none, legend=false)
f(x) = x^2
fp(x) = 2x
plot!(f, -1.5, 1.5)
plot!(zero)
tl = x -> f(a₀) + fp(a₀) * (x-a₀)
nl = x -> f(a₀) - 1/(fp(a₀)) * (x-a₀)
plot!(tl, -0.02, 1.6; linecolor=:black)
plot!(nl, -1.6, 1; linecolor=:black)
# add in right triangle
scatter!([a₀, q₀], f.([a₀, q₀]), markersize=5)
Δ = 0.01
annotate!([(a₀ + Δ, nl(a₀+Δ), "P", :bottom),
(q₀ - Δ, nl(q₀-Δ), "Q", :top)])
plt
end
make_plot()
```
The figure shows $f(x) = x^2$, the tangent line at $(a, f(a))$ (for $a > 0$), and the *normal* line at $(a, f(a))$. The questions all involve finding the value $a$ which minimizes a related quantity.
We set up some variables to work symbolically:
```{julia}
@syms a::positive x::real
f(x) = x^2
fp(x) = 2x
m = fp(a)
mᴵ = - 1/m
tl = f(a) + m * (x - a)
nl = f(a) + mᴵ * (x - a)
zs = solve(f(x) ~ nl, x)
q = only(filter(!=(a), zs))
```
----
The first question is simply:
> 1a. The $y$ coordinate of $Q$
```{julia}
#| echo: false
let
p = make_plot()
plot!(p, [q₀,q₀], [0,normal(q₀)], linewidth=5)
end
```
The value is $f(q)$
```{julia}
yvalue = f(q)
```
To minimize we solve for critical points:
```{julia}
cps = solve(diff(yvalue, a), a)
```
The lone critical point must be at a minimum. (Given the geometry of the problem, as $a$ goes to $\infty$ the height does too, and as $a$ goes to $0$ the height will also go to $\infty$. This can also be seen analytically, as $q = -a - 1/(2a)$ which goes to $-\infty$ when $a$ heads to $0$ or $\infty$.)
::: {.callout-note}
## We hide the code
In the remaining examples we don't show the code by default.
:::
----
> 1b. The length of the line segment $PQ$
```{julia}
#| echo: false
p = make_plot()
plot!([q₀, a₀], [f(q₀), f(a₀)], linewidth=5)
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
lseg = sqrt((f(a) - f(q))^2 + (a - q)^2);
```
----
> 2a. The horizontal distance between $P$ and $Q$
```{julia}
#| echo: false
p = make_plot()
plot!([q₀, a₀], [f(a₀), f(a₀)], linewidth=5)
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
hd = a - q;
```
----
> 2b. The area of the parabolic segment
```{julia}
#| echo: false
p = make_plot()
xs = range(q₀, a₀, 50)
xs = vcat(xs, reverse(xs), first(xs))
ys = vcat(f.(xs), normal.(reverse(xs)), f(first(xs)))
plot!(xs, ys, fill=(:green, 0.25, 0))
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
A = simplify(integrate(nl - f(x), (x, q, a)));
```
----
> 2c. The volume of the rotated solid formed by revolving the parabolic segment around the vertical line $k$ units to the right of $P$ or to the left of $Q$ where $k > 0$.
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
@syms k::nonnegative
V = simplify(integrate(PI * (nl - f(x) - k)^2, (x, q, a)));
```
----
> 3. The $y$ coordinate of the centroid of the parabolic segment
```{julia}
#| echo: false
p = make_plot()
scatter!(p, [-1/(4a₀)], [1], marker=(10, :diamond))
p
```
We warm up with the $x$ coordinate, given by:
```{julia}
xₘ = integrate(x * (nl - f(x)), (x, q, a)) / A
simplify(xₘ)
```
a fact noted by the author.
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
yₘ = integrate( (1//2) * (nl^2 - f(x)^2), (x, q, a)) / A
yₘ = simplify(yₘ);
```
----
> 4. The length of the arc of the parabola between $P$ and $Q$
```{julia}
#| echo: false
p = make_plot()
xs = range(q₀, a₀, 100)
plot!(xs, f.(xs), linewidth=5)
p
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
L = integrate(sqrt(1 + fp(x)^2), (x, q, a));
```
----
> 5. The $y$ coordinate of the midpoint ofthe line segment $PQ$
```{julia}
#| echo: false
p = make_plot()
mid = a₀/2 + q₀/2
vline!([mid])
scatter!([mid], [normal(mid)], markersize=5)
p
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
mp = nl(x => (a + q)/2);
```
----
> 6. The area of the trapezoid bound by the normal line, the $x$-axis, and the vertical lines through $P$ and $Q$.
```{julia}
#| echo: false
p = make_plot()
plot!([q₀, a₀, a₀, q₀, q₀],
[0, 0, f(a₀), f(q₀), 0]; fill=(:green, 0.25, 0))
p
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
trap = 1//2 * (f(q) + f(a)) * (a - q);
```
----
> 7. The area bounded by the parabola and the $x$ axis and the vertical lines through $P$ and $Q$
```{julia}
#| echo: false
p = make_plot()
ts = range(q₀, a₀, 100)
xs = vcat(ts, a₀, q₀, q₀)
ys = vcat(f.(ts), 0, 0, f(q₀))
plot!(xs, ys, fill=(:green, 0.25, 0))
p
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
pa = integrate(x^2, (x, q, a));
```
----
> 8. The area of the surface formed by revolving the arc of the parabola between $P$ and $Q$ around the vertical line through $P$
```{julia}
#| echo: false
let
using SplitApplyCombine
S(x, θ) = (a₀ - (a₀-x)*cos(θ), (a₀-x)*sin(θ), f(x))
xs = range(q₀, a₀, 50)
θs = range(0, 2pi, 50)
surface(SplitApplyCombine.invert(S.(xs,θs'))...)
end
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
# use parametric and 2π ∫ u(t) √(u'(t)^2 + v'(t)^2) dt
uu(x) = a - x
vv(x) = f(uu(x))
SA = 2PI * integrate(uu(x) * sqrt(diff(uu(x),x)^2 + diff(vv(x),x)^2), (x, q, a));
```
----
> 9. The height of the parabolic segment (i.e. the distance between the normal line and the tangent line to the parabola that is parallel to the normal line)
```{julia}
#| echo: false
# distance point to a line
# > solve(diff(x^2,x) ~ -1/fp(a), x) # mean value theorem
# -1/(4*a)
b₀ = -1/(4a₀) # mean value approach
# f(b0) + fp(a0)*(x-b0) = f(a0) - 1/fp(a0)*(x-a0)
x₀ = a₀/2 - 1/(8*a₀)
make_plot()
plot!(x -> f(b₀) + (-1/fp(a₀))*(x - b₀), -1, 1/2)
plot!([b₀,x₀], [f(b₀), normal(x₀)]; linewidth=5)
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
# find b through mean value theorem,
# then solve for point of intersection
b = only(solve(diff(f(x),x) ~ -1/fp(a), x))
b = only(solve(f(b) + fp(a)*(x-b) ~ nl, x))
segment_height = sqrt((b-b)^2 + (f(b) - nl(x=>b))^2);
```
----
> 10. The volume of the solid formed by revolving the parabolic segment around the $x$-axis
```{julia}
#| echo: false
let
using SplitApplyCombine
S(x,θ) = (x, ((f(a₀) - 1/fp(a₀)*(x - a₀)) .* (sin(θ), cos(θ)))...)
xs = range(q₀, a₀, 50)
θs = range(0, 2pi, 50)
surface(SplitApplyCombine.invert(S.(xs,θs'))...)
end
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
Vₓ = integrate(pi * (nl^2 - f(x)^2), (x, q, a));
```
----
> 11. The area of the triangle bound by the normal line, the vertical line through $Q$ and the $x$-axis
```{julia}
#| echo: false
make_plot()
# solve 0 = y0 + m * (x-x0) --> x0 - y0/m
p₀ = a₀ - f(a₀) / (-1/fp(a₀))
xlims!((-2, p₀ + 0.2))
plot!([p₀,q₀,q₀,p₀], [0,f(q₀),0,0];
fill=(:green, 0.25,0))
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
triangle = 1/2 * f(q) * (a - f(a)/(-1/fp(a)) - q);
```
----
> 12. The area of the quadrilateral bound by the normal line, the tangent line, the vertical line through $Q$ and the $x$-axis
```{julia}
#| echo: false
make_plot()
plot!([a₀,q₀,q₀,a₀-f(a₀)/fp(a₀),a₀],
[f(a₀), f(q₀), 0, 0,f(a₀)], fill=(:green, 0.25, 0))
```
```{julia}
#| code-fold: true
#| code-summary: "Show the code"
# @syms x[1:4], y[1:4]
# v1, v2, v3 = [[x[i]-x[1],y[i]-y[1], 0] for i in 2:4]
# area = 1//2 * last(cross(v3,v2) + cross(v2, v1)) # 1/2 area of parallelogram
# print(simplify(area))
# -(x₁ - x₂)*(y₁ - y₃)/2 + (x₁ - x₃)*(y₁ - y₂)/2 - (x₁ - x₃)*(y₁ - y₄)/2 + (x₁ - x₄)*(y₁ - y₃)/2
tl₀ = a - f(a) / fp(a)
x₁,x₂,x₃,x₄ = (a,q,q,tl₀)
y₁, y₂, y₃, y₄ = (f(a), f(q), 0, 0)
quadrilateral = -(x₁ - x₂)*(y₁ - y₃)/2 + (x₁ - x₃)*(y₁ - y₂)/2 - (x₁ - x₃)*(y₁ - y₄)/2 + (x₁ - x₄)*(y₁ - y₃)/2;
```
----
The answers appear here in sorted order, some given as approximate floating point values:
```{julia}
article_answers = (1/(2sqrt(2)), 1/2, sqrt(3/10), 0.558480, 0.564641,
0.569723, 0.574646,
1/sqrt(3), 1/8^(1/4), 1/6^(1/4), .644004, 1/sqrt(2))
```
```{julia}
#| echo: false
# check
problems = ("1a"=>yvalue, "1b"=>lseg, "1c"=>hd,
"2a" => A, "2b" => V,
"3" => yₘ,
"4" => L,
"5" => mp,
"6" => trap,
"7" => pa,
"8" => SA,
"9" => segment_height,
"10" => Vₓ,
"11" => triangle,
"12" => quadrilateral
)
≈ₒ(a,b) = isapprox(a, b; atol=1e-5, rtol=sqrt(eps()))
∂ = Differential(a)
solutions = [k => only(solve(∂(p) ~ 0, a)) for (k,p) in problems]
[(sol=k, correct=(any(isapprox.(s, article_answers; atol=1e-5)))) for (k,s) ∈ solutions]
nothing
```