Merge branch 'main' into v0.16
This commit is contained in:
commit
dcebed6fdd
@ -175,7 +175,7 @@ Consider the function $f(x) = (1+x^2)^{-1}$. This bell-shaped function is even (
|
||||
y &= \frac{1}{1 + x^2}\\
|
||||
1+x^2 &= \frac{1}{y}\\
|
||||
x^2 &= \frac{1}{y} - 1\\
|
||||
x &= \sqrt{(1-y)/y}, \quad 0 \leq y \leq 1.
|
||||
x &= \sqrt{(1-y)/y}, \quad 0 < y \leq 1.
|
||||
\end{align*}
|
||||
|
||||
|
||||
@ -322,7 +322,7 @@ Is it possible that a function have two different inverses?
|
||||
```{julia}
|
||||
#| hold: true
|
||||
#| echo: false
|
||||
choices = [L"No, for all $x$ in the domain an an inverse, the value of any inverse will be the same, hence all inverse functions would be identical.",
|
||||
choices = [L"No, for all $x$ in the domain and an inverse, the value of any inverse will be the same, hence all inverse functions would be identical.",
|
||||
L"Yes, the function $f(x) = x^2, x \geq 0$ will have a different inverse than the same function $f(x) = x^2, x \leq 0$"]
|
||||
answ = 1
|
||||
radioq(choices, answ)
|
||||
@ -337,7 +337,7 @@ A function takes a value $x$ adds $1$, divides by $2$, and then subtracts $1$. I
|
||||
```{julia}
|
||||
#| hold: true
|
||||
#| echo: false
|
||||
choices = [L"Yes, the function is the linear function $f(x)=(x+1)/2 + 1$ and so is monotonic.",
|
||||
choices = [L"Yes, the function is the linear function $f(x)=(x+1)/2 - 1$ and so is monotonic.",
|
||||
L"No, the function is $1$ then $2$ then $1$, but not \"one-to-one\""
|
||||
]
|
||||
answ = 1
|
||||
@ -571,8 +571,8 @@ Find the inverse function of $f(x) = (x^3 + 4)/5$.
|
||||
#| hold: true
|
||||
#| echo: false
|
||||
choices = [
|
||||
"``f^{-1}(x) = (5y-4)^{1/3}``",
|
||||
"``f^{-1}(x) = (5y-4)^3``",
|
||||
"``f^{-1}(x) = (5x-4)^{1/3}``",
|
||||
"``f^{-1}(x) = (5x-4)^3``",
|
||||
"``f^{-1}(x) = 5/(x^3 + 4)``"
|
||||
]
|
||||
answ = 1
|
||||
@ -686,7 +686,7 @@ The function $f(x) = (ax + b)/(cx + d)$ is known as a [Mobius](http://tinyurl.co
|
||||
* and $f_4(x) = x + a/c$ is a translation.
|
||||
|
||||
|
||||
For $x=10$, what is $f(10)$?
|
||||
For $x=10$, $a=1$, $b=2$, $c=3$ and $d=5$, what is $f(10)$?
|
||||
|
||||
|
||||
```{julia}
|
||||
@ -713,7 +713,7 @@ The last two answers should be the same, why?
|
||||
#| hold: true
|
||||
#| echo: false
|
||||
choices = [
|
||||
L"As $f_4(f_3(f_2(f)_1(x))))=(f_4 \circ f_3 \circ f_2 \circ f_1)(x)$",
|
||||
L"As $f_4(f_3(f_2(f_1(x))))=(f_4 \circ f_3 \circ f_2 \circ f_1)(x)$",
|
||||
L"As $f_4(f_3(f_2(f_1(x))))=(f_1 \circ f_2 \circ f_3 \circ f_4)(x)$",
|
||||
"As the latter is more complicated than the former."
|
||||
]
|
||||
@ -721,7 +721,7 @@ answ=1
|
||||
radioq(choices, answ)
|
||||
```
|
||||
|
||||
Let $g_1$, $g_2$, $g_3$, and $g_4$ denote the inverse functions. Clearly, $g_1(x) = x- d/c$ and $g+4(x) = x - a/c$, as the inverse of adding a constant is subtracting the constant.
|
||||
Let $g_1$, $g_2$, $g_3$, and $g_4$ denote the inverse functions. Clearly, $g_1(x) = x- d/c$ and $g_4(x) = x - a/c$, as the inverse of adding a constant is subtracting the constant.
|
||||
|
||||
|
||||
What is $g_2(x)=f_2^{-1}(x)$?
|
||||
|
@ -94,7 +94,7 @@ plot!(gf, label="g∘f")
|
||||
|
||||
:::{.callout-note}
|
||||
## Note
|
||||
Unlike how the basic arithmetic operations are treated, `Julia` defines the infix Unicode operator `\\circ[tab]` to represent composition of functions, mirroring mathematical notation. This infix operations takes in two functions and returns an anonymous function. It can be useful and will mirror standard mathematical usage up to issues with precedence rules.
|
||||
Unlike how the basic arithmetic operations are treated, `Julia` defines the infix Unicode operator `\circ[tab]` to represent composition of functions, mirroring mathematical notation. This infix operations takes in two functions and returns an anonymous function. It can be useful and will mirror standard mathematical usage up to issues with precedence rules.
|
||||
|
||||
:::
|
||||
|
||||
@ -108,7 +108,7 @@ $$
|
||||
(f \circ g)(x) = (e^x - x)^2 + 2(e^x - x) - 1.
|
||||
$$
|
||||
|
||||
If can be helpful to think of the argument to $f$ as a "box" that gets filled in by $g$:
|
||||
It can be helpful to think of the argument to $f$ as a "box" that gets filled in by $g$:
|
||||
|
||||
|
||||
|
||||
@ -484,7 +484,7 @@ If $h(x) = (f \circ g)(x) = \sin^2(x)$ which is a possibility for $f$ and $g$:
|
||||
#| hold: true
|
||||
#| echo: false
|
||||
choices = [raw"``f(x)=x^2; \quad g(x) = \sin^2(x)``",
|
||||
raw"```f(x)=x^2; \quad g(x) = \sin(x)``",
|
||||
raw"``f(x)=x^2; \quad g(x) = \sin(x)``",
|
||||
raw"``f(x)=\sin(x); \quad g(x) = x^2``"]
|
||||
answ = 2
|
||||
radioq(choices, answ)
|
||||
@ -519,7 +519,7 @@ Let $h(x) = 4x^2$ and $f(x) = x^2$. Which is **not** true:
|
||||
#| echo: false
|
||||
choices = [L"The graph of $h(x)$ is the graph of $f(x)$ stretched by a factor of ``4``",
|
||||
L"The graph of $h(x)$ is the graph of $f(x)$ scaled by a factor of ``2``",
|
||||
L"The graph of $h(x)$ is the graph of $f(x) shifted up by ``4`` units"]
|
||||
L"The graph of $h(x)$ is the graph of $f(x)$ shifted up by ``4`` units"]
|
||||
answ = 3
|
||||
radioq(choices, answ)
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user