diff --git a/quarto/integral_vector_calculus/line_integrals.qmd b/quarto/integral_vector_calculus/line_integrals.qmd index 8c36880..56e0254 100644 --- a/quarto/integral_vector_calculus/line_integrals.qmd +++ b/quarto/integral_vector_calculus/line_integrals.qmd @@ -316,7 +316,7 @@ $$ This is similar to gravitational force and is a *conservative force*. We saw that a line integral for work in a conservative force depends only on the endpoints. Verify, that for a closed loop the work integral will yield $0$. -Take as a closed loop the unit circle, parameterized by arc-length by $\vec{r}(t) = \langle \cos(t), \sin(t)\rangle$. The unit tangent will be $\hat{T} = \vec{r}'(t) = \langle -\sin(t), \cos(t) \rangle$. The work to move a particle of charge $q_0$ about a partical of charge $q$ at the origin around the unit circle would be computed through: +Take as a closed loop the unit circle, parameterized by arc-length by $\vec{r}(t) = \langle \cos(t), \sin(t)\rangle$. The unit tangent will be $\hat{T} = \vec{r}'(t) = \langle -\sin(t), \cos(t) \rangle$. The work to move a particle of charge $q_0$ about a particle of charge $q$ at the origin around the unit circle would be computed through: ```{julia} @@ -729,7 +729,7 @@ The surface element is the cross product $\langle \cos(\theta), \sin(\theta), -b ```{julia} -@syms 𝑹::postive θ::positive 𝒂::positive 𝒃::positive +@syms 𝑹::positive θ::positive 𝒂::positive 𝒃::positive 𝒏 = [cos(θ), sin(θ), -𝒃] × [-𝑹*sin(θ), 𝑹*cos(θ), 0] 𝒔𝒆 = simplify(norm(𝒏)) ``` @@ -1213,7 +1213,7 @@ numericq(0) ###### Question -Let $f(x,y) = \tan^{-1}(y/x)$. We will integrate $\nabla{f}$ over the unit circle. The integrand wil be: +Let $f(x,y) = \tan^{-1}(y/x)$. We will integrate $\nabla{f}$ over the unit circle. The integrand will be: ```{julia} @@ -1418,7 +1418,7 @@ numericq(a) ###### Question -Let $F=\langle 0,0,1\rangle$ and $S$ be the upper-half unit sphere, parameterized by $\Phi(\theta, \phi) = \langle \sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)\rangle$. Compute $\iint_S (F\cdot\hat{N}) dS$ numerically. Choose the normal direction so that the answer is postive. +Let $F=\langle 0,0,1\rangle$ and $S$ be the upper-half unit sphere, parameterized by $\Phi(\theta, \phi) = \langle \sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)\rangle$. Compute $\iint_S (F\cdot\hat{N}) dS$ numerically. Choose the normal direction so that the answer is positive. ```{julia}