Solution to problem 12 part 1 in Python
This commit is contained in:
parent
7762c1fda9
commit
c3faa9ea58
160
src/Year_2021/P12.py
Normal file
160
src/Year_2021/P12.py
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
# --- Day 12: Passage Pathing ---
|
||||||
|
|
||||||
|
# With your submarine's subterranean subsystems subsisting suboptimally, the
|
||||||
|
# only way you're getting out of this cave anytime soon is by finding a path
|
||||||
|
# yourself. Not just a path - the only way to know if you've found the best
|
||||||
|
# path is to find all of them.
|
||||||
|
|
||||||
|
# Fortunately, the sensors are still mostly working, and so you build a rough
|
||||||
|
# map of the remaining caves (your puzzle input). For example:
|
||||||
|
|
||||||
|
# start-A
|
||||||
|
# start-b
|
||||||
|
# A-c
|
||||||
|
# A-b
|
||||||
|
# b-d
|
||||||
|
# A-end
|
||||||
|
# b-end
|
||||||
|
|
||||||
|
# This is a list of how all of the caves are connected. You start in the cave
|
||||||
|
# named start, and your destination is the cave named end. An entry like b-d
|
||||||
|
# means that cave b is connected to cave d - that is, you can move between
|
||||||
|
# them.
|
||||||
|
|
||||||
|
# So, the above cave system looks roughly like this:
|
||||||
|
|
||||||
|
# start
|
||||||
|
# / \
|
||||||
|
# c--A-----b--d
|
||||||
|
# \ /
|
||||||
|
# end
|
||||||
|
|
||||||
|
# Your goal is to find the number of distinct paths that start at start, end at
|
||||||
|
# end, and don't visit small caves more than once. There are two types of
|
||||||
|
# caves: big caves (written in uppercase, like A) and small caves (written in
|
||||||
|
# lowercase, like b). It would be a waste of time to visit any small cave more
|
||||||
|
# than once, but big caves are large enough that it might be worth visiting
|
||||||
|
# them multiple times. So, all paths you find should visit small caves at most
|
||||||
|
# once, and can visit big caves any number of times.
|
||||||
|
|
||||||
|
# Given these rules, there are 10 paths through this example cave system:
|
||||||
|
|
||||||
|
# start,A,b,A,c,A,end
|
||||||
|
# start,A,b,A,end
|
||||||
|
# start,A,b,end
|
||||||
|
# start,A,c,A,b,A,end
|
||||||
|
# start,A,c,A,b,end
|
||||||
|
# start,A,c,A,end
|
||||||
|
# start,A,end
|
||||||
|
# start,b,A,c,A,end
|
||||||
|
# start,b,A,end
|
||||||
|
# start,b,end
|
||||||
|
|
||||||
|
# (Each line in the above list corresponds to a single path; the caves visited
|
||||||
|
# by that path are listed in the order they are visited and separated by
|
||||||
|
# commas.)
|
||||||
|
|
||||||
|
# Note that in this cave system, cave d is never visited by any path: to do so,
|
||||||
|
# cave b would need to be visited twice (once on the way to cave d and a second
|
||||||
|
# time when returning from cave d), and since cave b is small, this is not
|
||||||
|
# allowed.
|
||||||
|
|
||||||
|
# Here is a slightly larger example:
|
||||||
|
|
||||||
|
# dc-end
|
||||||
|
# HN-start
|
||||||
|
# start-kj
|
||||||
|
# dc-start
|
||||||
|
# dc-HN
|
||||||
|
# LN-dc
|
||||||
|
# HN-end
|
||||||
|
# kj-sa
|
||||||
|
# kj-HN
|
||||||
|
# kj-dc
|
||||||
|
|
||||||
|
# The 19 paths through it are as follows:
|
||||||
|
|
||||||
|
# start,HN,dc,HN,end
|
||||||
|
# start,HN,dc,HN,kj,HN,end
|
||||||
|
# start,HN,dc,end
|
||||||
|
# start,HN,dc,kj,HN,end
|
||||||
|
# start,HN,end
|
||||||
|
# start,HN,kj,HN,dc,HN,end
|
||||||
|
# start,HN,kj,HN,dc,end
|
||||||
|
# start,HN,kj,HN,end
|
||||||
|
# start,HN,kj,dc,HN,end
|
||||||
|
# start,HN,kj,dc,end
|
||||||
|
# start,dc,HN,end
|
||||||
|
# start,dc,HN,kj,HN,end
|
||||||
|
# start,dc,end
|
||||||
|
# start,dc,kj,HN,end
|
||||||
|
# start,kj,HN,dc,HN,end
|
||||||
|
# start,kj,HN,dc,end
|
||||||
|
# start,kj,HN,end
|
||||||
|
# start,kj,dc,HN,end
|
||||||
|
# start,kj,dc,end
|
||||||
|
|
||||||
|
# Finally, this even larger example has 226 paths through it:
|
||||||
|
|
||||||
|
# fs-end
|
||||||
|
# he-DX
|
||||||
|
# fs-he
|
||||||
|
# start-DX
|
||||||
|
# pj-DX
|
||||||
|
# end-zg
|
||||||
|
# zg-sl
|
||||||
|
# zg-pj
|
||||||
|
# pj-he
|
||||||
|
# RW-he
|
||||||
|
# fs-DX
|
||||||
|
# pj-RW
|
||||||
|
# zg-RW
|
||||||
|
# start-pj
|
||||||
|
# he-WI
|
||||||
|
# zg-he
|
||||||
|
# pj-fs
|
||||||
|
# start-RW
|
||||||
|
|
||||||
|
# How many paths through this cave system are there that visit small caves at
|
||||||
|
# most once?
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
from typing import DefaultDict
|
||||||
|
|
||||||
|
caves_map = defaultdict(list)
|
||||||
|
with open("files/P12.txt") as f:
|
||||||
|
for row in f:
|
||||||
|
start, end = row.strip().split("-")
|
||||||
|
caves_map[start].append(end)
|
||||||
|
caves_map[end].append(start)
|
||||||
|
|
||||||
|
|
||||||
|
def dfs(
|
||||||
|
node: str,
|
||||||
|
graph: DefaultDict[str, list[str]],
|
||||||
|
visited: set[str],
|
||||||
|
already_visited: bool,
|
||||||
|
counter: int = 0,
|
||||||
|
):
|
||||||
|
if node == "end":
|
||||||
|
return 1
|
||||||
|
for neighbour in graph[node]:
|
||||||
|
if neighbour.isupper():
|
||||||
|
counter += dfs(neighbour, graph, visited, already_visited)
|
||||||
|
else:
|
||||||
|
if neighbour not in visited:
|
||||||
|
counter += dfs(
|
||||||
|
neighbour, graph, visited | {neighbour}, already_visited
|
||||||
|
)
|
||||||
|
elif already_visited and neighbour not in {"start", "end"}:
|
||||||
|
counter += dfs(neighbour, graph, visited, False)
|
||||||
|
return counter
|
||||||
|
|
||||||
|
|
||||||
|
def part_1() -> None:
|
||||||
|
ans = dfs("start", caves_map, {"start"}, already_visited=False)
|
||||||
|
print(f"There are {ans} paths visiting small caves")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
part_1()
|
Loading…
Reference in New Issue
Block a user