Solution to problem 17 in Python
This commit is contained in:
parent
9b11007a2f
commit
606c111e32
221
src/2020/P17.py
Normal file
221
src/2020/P17.py
Normal file
@ -0,0 +1,221 @@
|
||||
# --- Day 17: Conway Cubes ---
|
||||
|
||||
# As your flight slowly drifts through the sky, the Elves at the Mythical
|
||||
# Information Bureau at the North Pole contact you. They'd like some help
|
||||
# debugging a malfunctioning experimental energy source aboard one of their
|
||||
# super-secret imaging satellites.
|
||||
|
||||
# The experimental energy source is based on cutting-edge technology: a set of
|
||||
# Conway Cubes contained in a pocket dimension! When you hear it's having
|
||||
# problems, you can't help but agree to take a look.
|
||||
|
||||
# The pocket dimension contains an infinite 3-dimensional grid. At every
|
||||
# integer 3-dimensional coordinate (x,y,z), there exists a single cube which is
|
||||
# either active or inactive.
|
||||
|
||||
# In the initial state of the pocket dimension, almost all cubes start
|
||||
# inactive. The only exception to this is a small flat region of cubes (your
|
||||
# puzzle input); the cubes in this region start in the specified active (#) or
|
||||
# inactive (.) state.
|
||||
|
||||
# The energy source then proceeds to boot up by executing six cycles.
|
||||
|
||||
# Each cube only ever considers its neighbors: any of the 26 other cubes where
|
||||
# any of their coordinates differ by at most 1. For example, given the cube at
|
||||
# x=1,y=2,z=3, its neighbors include the cube at x=2,y=2,z=2, the cube at
|
||||
# x=0,y=2,z=3, and so on.
|
||||
|
||||
# During a cycle, all cubes simultaneously change their state according to the
|
||||
# following rules:
|
||||
|
||||
# If a cube is active and exactly 2 or 3 of its neighbors are also active,
|
||||
# the cube remains active. Otherwise, the cube becomes inactive.
|
||||
# If a cube is inactive but exactly 3 of its neighbors are active, the cube
|
||||
# becomes active. Otherwise, the cube remains inactive.
|
||||
|
||||
# The engineers responsible for this experimental energy source would like you
|
||||
# to simulate the pocket dimension and determine what the configuration of
|
||||
# cubes should be at the end of the six-cycle boot process.
|
||||
|
||||
# For example, consider the following initial state:
|
||||
|
||||
# .#.
|
||||
# ..#
|
||||
# ###
|
||||
|
||||
# Even though the pocket dimension is 3-dimensional, this initial state
|
||||
# represents a small 2-dimensional slice of it. (In particular, this initial
|
||||
# state defines a 3x3x1 region of the 3-dimensional space.)
|
||||
|
||||
# Simulating a few cycles from this initial state produces the following
|
||||
# configurations, where the result of each cycle is shown layer-by-layer at
|
||||
# each given z coordinate (and the frame of view follows the active cells in
|
||||
# each cycle):
|
||||
|
||||
# Before any cycles:
|
||||
|
||||
# z=0
|
||||
# .#.
|
||||
# ..#
|
||||
# ###
|
||||
|
||||
|
||||
# After 1 cycle:
|
||||
|
||||
# z=-1
|
||||
# #..
|
||||
# ..#
|
||||
# .#.
|
||||
|
||||
# z=0
|
||||
# #.#
|
||||
# .##
|
||||
# .#.
|
||||
|
||||
# z=1
|
||||
# #..
|
||||
# ..#
|
||||
# .#.
|
||||
|
||||
|
||||
# After 2 cycles:
|
||||
|
||||
# z=-2
|
||||
# .....
|
||||
# .....
|
||||
# ..#..
|
||||
# .....
|
||||
# .....
|
||||
|
||||
# z=-1
|
||||
# ..#..
|
||||
# .#..#
|
||||
# ....#
|
||||
# .#...
|
||||
# .....
|
||||
|
||||
# z=0
|
||||
# ##...
|
||||
# ##...
|
||||
# #....
|
||||
# ....#
|
||||
# .###.
|
||||
|
||||
# z=1
|
||||
# ..#..
|
||||
# .#..#
|
||||
# ....#
|
||||
# .#...
|
||||
# .....
|
||||
|
||||
# z=2
|
||||
# .....
|
||||
# .....
|
||||
# ..#..
|
||||
# .....
|
||||
# .....
|
||||
|
||||
|
||||
# After 3 cycles:
|
||||
|
||||
# z=-2
|
||||
# .......
|
||||
# .......
|
||||
# ..##...
|
||||
# ..###..
|
||||
# .......
|
||||
# .......
|
||||
# .......
|
||||
|
||||
# z=-1
|
||||
# ..#....
|
||||
# ...#...
|
||||
# #......
|
||||
# .....##
|
||||
# .#...#.
|
||||
# ..#.#..
|
||||
# ...#...
|
||||
|
||||
# z=0
|
||||
# ...#...
|
||||
# .......
|
||||
# #......
|
||||
# .......
|
||||
# .....##
|
||||
# .##.#..
|
||||
# ...#...
|
||||
|
||||
# z=1
|
||||
# ..#....
|
||||
# ...#...
|
||||
# #......
|
||||
# .....##
|
||||
# .#...#.
|
||||
# ..#.#..
|
||||
# ...#...
|
||||
|
||||
# z=2
|
||||
# .......
|
||||
# .......
|
||||
# ..##...
|
||||
# ..###..
|
||||
# .......
|
||||
# .......
|
||||
# .......
|
||||
|
||||
# After the full six-cycle boot process completes, 112 cubes are left in the
|
||||
# active state.
|
||||
|
||||
# Starting with your given initial configuration, simulate six cycles. How many
|
||||
# cubes are left in the active state after the sixth cycle?
|
||||
|
||||
import itertools as iter
|
||||
|
||||
with open("files/P17.txt", "r") as f:
|
||||
init_state = [line for line in f.read().strip().split("\n")]
|
||||
|
||||
|
||||
def get_active_points(dim: int):
|
||||
ap = set()
|
||||
for y, z in enumerate(init_state):
|
||||
for x, c in enumerate(z):
|
||||
if c == "#":
|
||||
ap.add(tuple([x, y] + [0] * (dim - 2)))
|
||||
return ap
|
||||
|
||||
|
||||
def part_1() -> None:
|
||||
active_points = get_active_points(dim=3)
|
||||
for it in range(6):
|
||||
new_active_points = set()
|
||||
# check x,y,z point
|
||||
for x in range(-10 - it, it + 10):
|
||||
for y in range(-10 - it, it + 10):
|
||||
for z in range(-2 - it, it + 2):
|
||||
point = (x, y, z)
|
||||
|
||||
# for the current point, check the neighbors
|
||||
num_actives = 0
|
||||
for delta in iter.product(range(-1, 2), repeat=3):
|
||||
if delta != (0,) * 3:
|
||||
if (
|
||||
tuple([a + b for a, b in zip(point, delta)])
|
||||
in active_points
|
||||
):
|
||||
num_actives += 1
|
||||
|
||||
# apply rules
|
||||
if point in active_points and (
|
||||
num_actives == 2 or num_actives == 3
|
||||
):
|
||||
new_active_points.add(point)
|
||||
if point not in active_points and num_actives == 3:
|
||||
new_active_points.add(point)
|
||||
|
||||
# next iteration
|
||||
active_points = new_active_points
|
||||
print(f"After 6 cycles in 3D, we have {len(active_points)} active cubes")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
part_1()
|
Loading…
Reference in New Issue
Block a user