more pset2 problems
This commit is contained in:
parent
eab03cfce5
commit
4c63b638e3
@ -28,12 +28,67 @@
|
||||
"Compare the eigenvalues of $B$ (`eigvals(B)`) to the singular values of $A$ (`svdvals(A)`). What do you notice? Explain it by using the SVD $A = U \\Sigma V^T$ to construct eigenvalues and eigenvectors of $B$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8110f592",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem 2\n",
|
||||
"\n",
|
||||
"**(a)** For any $m \\times n$ real matrix $A$ and any real unitary $m \\times m$ matrix $Q_1$ and any real unitary $n \\times n$ matrix $Q_2$, show that $\\Vert A \\Vert$ = $\\Vert Q_1 A Q_2 \\Vert$ for the norms:\n",
|
||||
"$$\n",
|
||||
"\\Vert A \\Vert_2 = \\max_{x\\ne 0} \\frac{\\Vert A x \\Vert_2}{\\Vert x \\Vert_2}\\, , \\; \\; \\Vert A \\Vert_F = \\sqrt{\\text{tr}(A^T A) } \\, .\n",
|
||||
"$$\n",
|
||||
"Do *not* use the relationships of these norms to the singular values of $A$, from class; use only the definitions above. (Hint: a change of variables may be useful for the first norm, and the cyclic property of the trace for the second.)\n",
|
||||
"\n",
|
||||
"**(b)** Using the full SVD $A = U \\Sigma V^T$ and the unitary invariance from part (a), show that $\\Vert A \\Vert_2 = \\sigma_1$ and $\\Vert A \\Vert_F = \\sqrt{\\sum_k \\sigma_k^2}$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "32250444",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem 3\n",
|
||||
"\n",
|
||||
"Find a closest-rank-1 matrix (in the Frobenius norm, for example) to:\n",
|
||||
"\n",
|
||||
"**(a)** $A = \\begin{pmatrix} 0 & 3 \\\\ 2 & 0 \\end{pmatrix}$\n",
|
||||
"\n",
|
||||
"**(b)** $A = \\begin{pmatrix} \\cos\\theta & -\\sin\\theta \\\\ \\sin\\theta & \\cos\\theta \\end{pmatrix}$ (where $\\theta$ is some real number).\n",
|
||||
"\n",
|
||||
"You should be able to do your calculations completely by hand (it's not too hard, honest!), but of course you may use Julia to check your answers if you wish."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d438a8e0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problem 4\n",
|
||||
"\n",
|
||||
"For an $m \\times m$ real-symmetric matrix $S = S^T$, we know that we have real eigenvalues $\\lambda_1,\\ldots,\\lambda_m$ and can find an orthonormal basis of eigenvectors $Q = \\begin{pmatrix} q_1 & \\cdots & q_m \\end{pmatrix}$. So, we can write any vector $x \\in \\mathbb{R}^m$ as $x = Qc = q_1 c_1 + \\cdots q_m c_m$ for some coefficient $c$.\n",
|
||||
"\n",
|
||||
"**(a)** Show that $x^T x = c_1^2 + \\cdots + c_m^2$ and $x^T S x = \\lambda_1 c_1^2 + \\cdots + \\lambda_m c_m^2$.\n",
|
||||
"\n",
|
||||
"**(b)** Show that the **Rayleigh quotient**\n",
|
||||
"$$\n",
|
||||
"R(x) = \\frac{x^T S x}{x^T x}\n",
|
||||
"$$\n",
|
||||
"is *maximized* (over *any* possible $x \\ne 0$, not just eigenvectors) by $R(q_1) = \\lambda_1$.\n",
|
||||
"\n",
|
||||
"**(c)** If $A$ is any $m \\times n$ real matrix, we know that the squared singular values $\\sigma_i^2$ are the nonzero eigenvalues of $A^T A$. Use this fact, combined with part (b), to give an alternative proof of why\n",
|
||||
"$$\n",
|
||||
"\\Vert A \\Vert_2 = \\max_{x\\ne 0} \\frac{\\Vert A x \\Vert_2}{\\Vert x \\Vert_2} = \\sigma_1\n",
|
||||
"$$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "88ac965b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Problems 2, 3, etc: coming soon"
|
||||
"## Problems 5, 6, etc: coming soon"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user